Skip to main content

Advertisement

Log in

Geochemistry and quality of groundwater of the Yarmouk basin aquifer, north Jordan

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Quality of groundwater in the Yarmouk basin, Jordan has been assessed through the study of hydrogeochemical characteristics and the water chemistry as it is considered the main source for drinking and agriculture activities in the region. The results of the relationship between Ca2+ + Mg2+ versus HCO3 + CO32−, Ca2+ + Mg2+ versus total cations, Na+ + K+ versus total cations, Cl + SO42− versus Na+ + K+, Na+ versus Cl, Na+ versus HCO3 + CO32−, Na+ versus Ca2+, and Na+: Cl versus EC describe the mineral dissolution mechanism through the strong relationship between water with rocks in alkaline conditions with the release of Ca2+, Mg2+, Na+, K+, HCO3, CO32−, SO42−, and F ions in the groundwater for enrichment. Furthermore, evaporation processes, groundwater depletion, and ion exchange contribute to the increased concentration of Na+ and Cl ions in groundwater. Anthropogenic sources are one of the main reasons for contamination of groundwater in the study area and for increasing the concentration of Mg2+, Na+, Cl, SO42−, and NO3 ions. Results show the quality of groundwater in the study area is categorized as follows: HCO3 + CO32− > Cl > SO42− > NO3 > F and Na+ > Ca2+ > Mg2+ > K+. In conclusion, the results of TDS, TH, and chemical composition showed that 26% of the groundwater samples were unsuitable for drinking. About 28% of groundwater samples in the study area have a high concentration of Mg2+, Na+, and NO3 above the acceptable limit. Also, based on high SAR, 10% of the groundwater samples were not suitable for irrigation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abboud, I. A. (2014). Describe and statistical evaluation of hydrochemical data of karst phenomena in Jordan: Al-Dhaher cave karst spring. Researcher, 6(3), 56–76. ISSN: 1553-9865. http://www.sciencepub.net/researcher/. https://doi.org/10.7537/marsrsj060314.11.

  • Abu-Jaber, N. (2001). Geochemical evolution and recharge of the shallow aquifers at Tulul al Ashaqif, NE Jordan. Environmental Geology, 41, 372–383.

    Article  CAS  Google Scholar 

  • Abu-Jaber, N., & Kharabsheh, A. (2008). Ground water origin and movement in the upper Yarmouk Basin, Northern Jordan. Environmental Geology, 54, 1355–1365. https://doi.org/10.1007/s00254-007-0917-1.

    Article  Google Scholar 

  • APHA. (1992). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association.

    Google Scholar 

  • Awad, R., Taqieddin, S. A., Al-Homoud, A. S., & Barakat, E. A. (1997). Hydrochemical assessment of a deep Jordanian aquifer. Environmental Geology, 30(3/4), 198–208.

    Google Scholar 

  • Bajjali, W. (2006). Recharge mechanism and hydrochemistry evaluation of groundwater in the Nuaimeh area, Jordan, using environmental isotope techniques. Hydrogeology Journal, 14, 180–191.

    Article  CAS  Google Scholar 

  • Bajjali, W., Al-Hadidi, K., & Ismail, M. (2015). Water quality and geochemistry evaluation of groundwater upstream and downstream of the Khirbet Al-Samra wastewater treatment plant/Jordan. Journal of Applied Water Science. https://doi.org/10.1007/s13201-014-0263-x.

    Article  Google Scholar 

  • Bajjali, W., Clark, I. D., & Fritz, P. (1997). The artesian thermal ground waters of northern Jordan: Insights into their recharge history and age. Journal of Hydrology, 192(1–4), 355–382.

    Article  CAS  Google Scholar 

  • Bender, F. (1968). Geologie von Jordanien (Geology of Jordan). Gebr_der Borntr_ger, Berlin, Germany.

  • Berner, E. K., & Berner, R. A. (1987). The global water cycle, geochemistry, and environment. New Jersey: Prentice-Hall.

    Google Scholar 

  • BIS. (2003). Drinking water specifications (p. 10500). IS: Bureau of Indian Standards.

    Google Scholar 

  • Bouwer, H. (1978). Groundwater hydrology. New York: McGraw-Hill Book Company.

    Google Scholar 

  • Chow, V. T. (1964). Handbook of applied hydrology. New York: McGraw-Hill.

    Google Scholar 

  • Cushing, E. M., Kantrowitz, I. H., & Taylor, K. R. (1973). Water resources of the Delmarva Peninsular. U. S. Geological survey professional paper 822, Washington, DC.

  • Datta, P. S., & Tyagi, S. K. (1996). Major ion chemistry of groundwater in Delhi area: chemical weathering processes and groundwater flow regime. Journal Geological Society of India, 47, 179–188.

    CAS  Google Scholar 

  • Demetriades, A. (2011). Understanding the quality of chemical data from the urban environment—Part 2: Measurement uncertainty in the decision-making process. In C. C. Johnson, A. Demetriades, J. Locutura, & R. T. Ottesen (Eds.), Mapping the chemical environment of urban areas (pp. 77–98). Chichester: Wiley-Blackwell.

    Chapter  Google Scholar 

  • DOM. (2015). Open-file report. Jordan: Department of Meteorology, Ministry of Transport, Amman.

    Google Scholar 

  • Domenico, P. A., & Schwartz, F. W. (1990). Physical and chemical hydrogeology. New York: Wiley.

    Google Scholar 

  • Doneen, L. D. (1964). Notes on water quality in agriculture. Water science and engineering paper 4001, California, Department of Water Sciences and Engineering, University of California.

  • DS. (Department of Statistics). (2016). Jordan in figures. http://www.dos.gov.jo/.

  • EL-Naser, H. (1991). Groundwater resources of the deep aquifer systems in NW-Jordan: Hydrogeological and hydrochemical quasi three-dimensional modelling-Hydrogeologie und Umwelt, Heft 3, p. 1-144. PhD Thesis, University of Würzburg.

  • Eraifej, N., & Abu-Jaber, N. (1999). Geochemistry and pollution of shallow aquifers in the Mafraq area, North Jordan. Environmental Geology, 37, 162–170.

    Article  CAS  Google Scholar 

  • Fetter, C. W. (1990). Applied hydrogeology. New Delhi: CBS Publishers and Distributors.

    Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. New Jersey: Prentice-Hall.

    Google Scholar 

  • Garg, V. K., Suthar, S., Singh, S., Sheoran, A., Garima, M., & Jai, S. (2009). Drinking water quality in villages of southwestern Haryana, India: Assessing human health risks associated with hydrochemistry. Environmental Geology, 58, 1329–1340.

    Article  CAS  Google Scholar 

  • Garrels, R. M., & Christ, C. L. (1965). Solutions, minerals and equilibria. New York: Harper and Row.

    Google Scholar 

  • Gibbs, R. J. (1970). Mechanism controlling world’s water chemistry. Science, 170, 1088–1090.

    Article  CAS  Google Scholar 

  • Hem, J. D. (1970). Study and interpretation of the chemical characteristics of natural water. USGS water supply paper, 1473.

  • Hem, J. D. (1991). Study and interpretation of the chemical characteristics of natural water: USGS professional paper book 2254. Jodhpur: Scientific Publishers.

    Google Scholar 

  • Holden, W. S. (1970). Water treatment and examination. London: J & Churchill Publishers.

    Google Scholar 

  • Ibrahim, K. (1993). Al Azraq Sheet 33531 Geological Map Series, Amman: NRA.

  • ISI. (1963). Indian standard methods of sampling and tests (physical and chemical) for water used in industry. India: Indian Standard Institute.

    Google Scholar 

  • Jacks, G. (1973). Chemistry of groundwater in a district in southern India. Journal of Hydrology, 18, 185–200.

    Article  CAS  Google Scholar 

  • JS. (1997). Jordanian drinking water standards, 286/1997.

  • Karanth, K. R. (1997). Groundwater assessment, development, and management. New Delhi: Tara McGraw-Hill Publ. Co. Ltd.

    Google Scholar 

  • Kattan, Z. (1996). Chemical and environmental isotope study of the fissured basaltic aquifer systems of Yarmouk Basin, Syria. In Isotope field applications for groundwater studies in the Middle East. In Final coordination meeting of a regional technical cooperation project (pp 151–184). Ankara and Vienna: International Atomic Energy Agency, IAEA-TECDOC-890, IAEA.

  • Kuisi, M. A., Al-Qinna, M., Margane, A., & Aljazzar, T. (2009). Spatial assessment of salinity and nitrate pollution in Amman Zarqa Basin: A case study. Environmental Earth Sciences, 59, 117–129.

    Article  CAS  Google Scholar 

  • Langelier, W. F., & Ludwig, H. F. (1942). Graphic method for indicating the mineral character of natural water. Journal American Water Works Association, 34, 335–352.

    Article  CAS  Google Scholar 

  • Magaritz, M., Nadler, A., Koyumdjiski, H., & Dan, J. (1981). The use of Na/Cl ratios to trace solute sources in a semiarid zone. Water Resources Research, 17(3), 602–608.

    Article  CAS  Google Scholar 

  • Makhlouf, I., Abu-Azzam, H., & Al-Hiayri, A. (1996). Surface and subsurface lithostratigraphic relationships of the Cretaceous Ajlun Group in Jordan. Natural Resources Authority, Subsurface Geology Division, Bulletin 8.

  • McCarthy, M. F. (2004). Should we restrict chloride rather than sodium? Medical Hypothesis, 63, 138–148.

    Article  CAS  Google Scholar 

  • Moh’d, B. (2000). The geology of Irbid and Ash Shuna Ash Shamaliyya (Waqqas) map sheet no. 3154-II and 3154-III. Natural Resources Authority, Geological Mapping Division, Bulletin 46.

  • Obeidat, M. M., Awawdeh, M., & Abu Al-Rub, F. (2012). Multivariate statistical analysis and environmental isotopes of Amman/Wadi Sir (B2/A7) groundwater, Yarmouk River Basin, Jordan. Hydrol process. New York: Wiley. https://doi.org/10.1002/hyp.9245.

    Book  Google Scholar 

  • Parker, D. (1970). The hydrogeology of the Mesozoic-Cenozoic aquifers of the western highlands and plateau of east Jordan. Investigation of the sandstone aquifers of east Jordan, technical report no. 2: UNDP/FAO Project 212.

  • Parkhurst, D. L. (1995). User’s guide to PHEREQC-A computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations. Lakewood, Colorado: U.S. Geological Survey.

    Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water analyses. Transactions American Geophysical Union, 25, 914–923.

    Article  Google Scholar 

  • Rao, N. (2008). Factors controlling the salinity in groundwaters from a part of Guntur district, Andhra Pradesh, India. Environmental Monitoring and Assessment, 138, 327–341.

    Article  CAS  Google Scholar 

  • Rao, N. S., Subrahmanyam, A., Kumar, S. R., Srinivasulu, N., Rao, B. G., Rao, P. S., et al. (2012). Geochemistry and quality of groundwater of Gummanampadu sub-basin, Guntur District, Andhra Pradesh, India. Environmental Earth Sciences. https://doi.org/10.1007/s12665-012-1590-6.

    Article  Google Scholar 

  • Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. Agricultural hand book 60 (p. 160). Washington D.C: U. S. Dept. of Agriculture

  • Rimawi, O. (1985). Hydrogeochemistry and isotope hydrology of the ground and surface water in North Jordan (North-Northeast of Mafraq, Dhuleil-Hallabat, Azraq Basin), Ph.D. thesis, Univerrsität Eingereuicht und Dirch die Fakultät für Chemie, Biologie und Geowissen-Schaftenam, München, Germany.

  • Ritzi, R. W., Wright, S. L., Mann, B., & Chen, M. (1993). Analysis of temporal variability in hydrogeochemical data used for multivariate analyses. Ground Water, 31, 221–229.

    Article  CAS  Google Scholar 

  • Salameh, E. (1996). Water quality degradation in Jordan (impacts on environment, economy and future generations R, final report. Friedrich Ebert Stiftung & Royal Society for the Conservation of Nature, The Higher Council of Science and Technology, The National Library, Deposit No. 1134/8/1996; Amman, Jordan, pp. 178.

  • Salameh, E. (2004). Using environmental isotopes in the study of the recharge–discharge discharge mechanisms of the Yarmouk catchment area in Jordan. Hydrogeology Journal, 12(4), 451–463.

    Article  CAS  Google Scholar 

  • Salameh, E., & Bannayan, H. (1993). Water resources of Jordan; Present status and future potentials. Amman: Fredrich Ebert Stiftung and the Royal Society for the Conservation of Nature.

    Google Scholar 

  • Salem, W. M., & El-Sayed, M. (2015). Hydro-geochemical and isotopic composition of ground water in Helwan area. Egyptian Journal of Petroleum, 24(4), 411–421. https://doi.org/10.1016/j.ejpe.2015.10.004.

    Article  Google Scholar 

  • Sarin, M. M., Krishnaswamy, S., Dillikumar, K., Somayajulu, B. L. K., & Moore, W. S. (1989). Major-ion chemistry of the Ganga-Brahmaputrariver system: Weathering processes and fluxes to the Bay of Bengal. Geochimica et Cosmochimica Acta, 53, 997–1009.

    Article  CAS  Google Scholar 

  • Sawyer, C. N., & McCarty, P. L. (1967). Chemistry for sanitary engineers (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Schoeller, H. (1965). Qualitative evaluation of groundwater resources. In Methods and techniques of groundwater investigations and development (pp. 54–83). UNESCO.

  • Schoeller, H. (Ed.) (1967). Qualitative Evaluation of Ground Water Resources. In Methods and Techniques of Groundwater Investigation and Development, Water Resource Series No. 33 (pp. 44–52). Paris: UNESCO.

  • Selkhozpromexport. (1986). Water Resources Use in Barada and Auvage Basins for Irrigation of Crops. Published by Syrian Arab Republic; USSR; Ministry of Land Reclamation and Water Management. Moscow.

  • Shafer, M. M., Overdier, J. T., Hurley, J. P., Armstrong, D., & Webb, D. (1997). The influence of dissolved organic carbon, suspended particulates, and hydrology on the concentration, partitioning and variability of trace metals in two contrasting Wisconsin watersheds (USA). Chemical Geology, 136, 71–97.

    Article  CAS  Google Scholar 

  • Stallard, R. E., & Edmond, J. M. (1983). Geochemistry of Amazon River: The influence of the geology and weathering environment on the dissolved load. Journal Geophysical Research, 88, 9671–9688.

    Article  CAS  Google Scholar 

  • Szaboles, I., & Darab, C. (1964). The influence of irrigation water of high sodium carbonate content of soils. In Proceedings of 8th international congress of ISSS, Trans, II (pp. 803–812).

  • Ta’any, R. A., Batayneh, A. T., Jaradat, R. A. (2007). Evaluation of groundwater quality in the Yarmouk Basin, North Jordan. Journal of Environmental Hydrology, 15, 28.

  • Todd, D. K. (1980). Groundwater hydrology. New York: Wiley.

    Google Scholar 

  • UN-ESCWA, & BGR, (2013). United Nations Economic and Social Commission for Western Asia; Bundesanstalt für Geowissenschaften und Rohstoffe. Beirut: Inventory of Shared Water Resources in Western Asia.

  • WAJ, The Hashemite Kingdom of Jordan, Ministry of Water and Irrigation, Water Authority of Jordan). (2010). Feasibility study, environmental and social impact assessment and detailed designs and bidding documents for Zarqa Governorate wastewater system reinforcement and expansion project. Preparatory works technical report (p. 127).

  • WAJ, Water Authority of Jordan. (1989). Yarmouk basin water resources study, final report. Unpublished report, North Jordan water resources investigation project, Amman.

  • Walton, W. C. (1970). Groundwater resource evaluation. New York: McGraw-Hill.

    Google Scholar 

  • WHO. (2004). Guidelines for drinking-water quality, volume 1: Recommendations (3rd edn). Geneva: World Health Organization. www.who.int/water_sanitation_health.

  • WHO. (2011a). Guidelines for drinking water quality. Geneva: World Health Organization.

    Google Scholar 

  • WHO, World Health Organization. (1993). Guidelines for drinking water quality, recommendations (2nd ed., Vol. 1). Geneva: WHO.

    Google Scholar 

  • WHO. (2011b). Guidelines for drinking water quality. Geneva: World Health Organization.

    Google Scholar 

  • Wilcox, L. V. (1955). Classification and use of irrigation water. U.S. Department of Agriculture Circular 969, Washington, DC Environmental Earth Sciences.

Download references

Acknowledgements

I’m grateful to the laboratory of Water and Irrigation Authority in the Water Ministry, Amman, Jordan, and the Institute of Earth and Environmental Sciences, Al al-Bayt University, Jordan, for helping to water analyses. I’m thankful to Mr. Sa’ed Abu Snineh for helping in data collection. Many thanks to Prof. Dr. Rashad Kebeish and Dr. Ahmed Khalil, Faculty of Science-Yanbu, Taibah University for their valuable revision and correction of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iyad Ahmed Abboud.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 222 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abboud, I.A. Geochemistry and quality of groundwater of the Yarmouk basin aquifer, north Jordan. Environ Geochem Health 40, 1405–1435 (2018). https://doi.org/10.1007/s10653-017-0064-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-017-0064-x

Keywords

Navigation