Skip to main content
Log in

GC-MS metabolite profiling of Phytophthora infestans resistant to metalaxyl

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Phytophthora infestans is the most important potato pathogen worldwide. Various alternatives have been used to control the pathogen, including continuous applications of phenylamide fungicides which has caused a rapid development of resistance in populations of P. infestans. Despite the importance of the disease, metabolite profiling of fungicide-resistant P. infestans has not been reported. In vitro resistance of Phytophthora infestans isolates to metalaxyl was characterized and metabolic changes in resistant isolates were evaluated at low (0.5 mg/L) and high (100 mg/L) concentrations of the fungicide. About 70% of the isolates tested showed resistance to metalaxyl and a total of 49 metabolites were differently expressed in resistant isolates growing in the presence of the fungicide. Principal components analysis revealed a distinct metabolite profile of resistant isolates exposed to both low and high levels of metalaxyl. The main metabolites responsible for the clustering in both fungicide concentrations included fatty acids such as hexadecanoic and octadecanoic acids, sugars such as glucose and fructose, aminoacids such as proline and valine, and organic acids such as butanedioic and propanoic acids. Potential resistance-related metabolic pathways are mostly involved in the regulation of the pathogen’s membrane fluidity and included the fatty acid biosynthesis as well as the glycerophospholipid metabolism pathways. This is the first metabolomic-based characterization of fungicide resistance in plant pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aav, A., Skrabule, I., Bimšteine, G., Kaart, T., Williams, I. H., & Runno-Paurson, E. (2015). The structure of mating type, metalaxyl resistance and virulence of Phytophthora infestans isolates collected from Latvia. Zemdirbyste-Agriculture, 102(3), 335–342.

    Article  Google Scholar 

  • Aliferis, K. A., & Chrysayi-Tokousbalides, M. (2011). Metabolomics in pesticide research and development: Review and future perspectives. Metabolomics, 7(1), 35–53.

    Article  CAS  Google Scholar 

  • Cenis, J. L. (1992). Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Research, 20(9), 2380 http://www.ncbi.nlm.nih.gov/pubmed/1594460. Accessed 26 November 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cevallos-Cevallos, J., & Reyes-De-Corcuera, J. I. (2012). Metabolomics in food science. Advances in Food and Nutrition Research, 67, 1–24.

    Article  CAS  PubMed  Google Scholar 

  • Cevallos-Cevallos, J., Rouseff, R., & Reyes-De-Corcuera, J. I. (2009). Untargeted metabolite analysis of healthy and huanglongbing-infected orange leaves by CE-DAD. Electrophoresis, 30(7), 1240–1247.

    Article  CAS  PubMed  Google Scholar 

  • Cevallos-Cevallos, J., García-Torres, R., Etxeberria, E., & Reyes-De-Corcuera, J. I. (2011a). GC-MS analysis of headspace and liquid extracts for metabolomic differentiation of citrus huanglongbing and zinc deficiency in leaves of “Valencia” sweet orange from commercial groves. Phytochemical analysis : PCA, 22(3), 236–246.

    Article  CAS  PubMed  Google Scholar 

  • Cevallos-Cevallos, J., Danyluk, M. D., & Reyes-De-Corcuera, J. I. (2011b). GC-MS based metabolomics for rapid simultaneous detection of Escherichia coli O157:H7, Salmonella Typhimurium, Salmonella Muenchen, and Salmonella Hartford in ground beef and chicken. Journal of Food Science, 76(4), M238–M246.

    Article  CAS  PubMed  Google Scholar 

  • Cevallos-Cevallos, J. M., Futch, D. B., Reyes-De-Corcuera, J. I., Folimonova, S. Y., & Shilts, T. (2012). GC–MS metabolomic differentiation of selected citrus varieties with different sensitivity to citrus huanglongbing. Plant Physiology and Biochemistry, 53, 69–76.

    Article  CAS  PubMed  Google Scholar 

  • Childers, R., Danies, G., Myers, K., Fei, Z., Small, I. M., & Fry, W. E. (2015). Acquired resistance to mefenoxam in sensitive isolates of Phytophthora infestans. Phytopathology, 105(3), 342–349.

    Article  CAS  PubMed  Google Scholar 

  • Davidse, L. C., Gerritsma, O. C. M., Ideler, J., Pie, K., & Velthuis, G. C. M. (1988). Antifungal modes of action of metalaxyl, cyprofuram, benalaxyl and oxadixyl in phenylamide-sensitive and phenylamide-resistant strains of Phytophthora megasperma F. Sp. medicaginis and Phytophthora infestans. Crop Protection, 7(6), 347–355.

    Article  CAS  Google Scholar 

  • Dawaliby, R., Trubbia, C., Delporte, C., Noyon, C., Ruysschaert, J.-M., Van Antwerpen, P., & Govaerts, C. (2016). Phosphatidylethanolamine is a key regulator of membrane fluidity in eukaryotic cells. The Journal of Biological Chemistry, 291(7), 3658–3667.

    Article  CAS  PubMed  Google Scholar 

  • Fiehn, O. (2001). Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comparative and Functional Genomics. doi:10.1002/cfg.82.

    PubMed  PubMed Central  Google Scholar 

  • Goodwin, S., Sujkowski, L., & Fry, W. (1996). Widespread distribution and probable origin of resistance of metalaxyl in clonal genotypes of Phytophthora infestans in the United States and western Canada. Ecology and Epidemiology, 86(7), 793–800.

    CAS  Google Scholar 

  • Grünwald, N. J., Sturbaum, A. K., Montes, G. R., Serrano, E. G., Lozoya-Saldaña, H., & Fry, W. E. (2006). Selection for fungicide resistance within a growing season in field populations of Phytophthora infestans at the Center of Origin. Phytopathology, 96(12), 1397–1403.

    Article  PubMed  Google Scholar 

  • Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28(1), 27–30 http://www.ncbi.nlm.nih.gov/pubmed/10592173. Accessed 28 November 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, Z., & Michailides, T. J. (2005). Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protection, 24(10), 853–863.

    Article  CAS  Google Scholar 

  • Maridueña-Zavala, M. G., Villavicencio-Vásquez, M. E., Cevallos-Cevallos, J. M., & Peralta, E. L. (2016). Molecular and morphological characterization of Moniliophthora roreri isolates from cacao in Ecuador. Canadian Journal of Plant Pathology, 38(4), 460–469.

    Article  Google Scholar 

  • Matson, M. E. H., Small, I. M., Fry, W. E., & Judelson, H. S. (2015). Metalaxyl resistance in Phytophthora infestans : Assessing role of RPA190 Gene and Diversity within clonal lineages. Phytopathology, 105(12), 1594–1600.

    Article  CAS  PubMed  Google Scholar 

  • Mukalazi, J., Adipala, E., Sengooba, T., Hakiza, J. J., Olanya, M., & Kidanemariam, H. M. (2001). Metalaxyl resistance, mating type and pathogenicity of Phytophthora infestans in Uganda. Crop Protection, 20(5), 379–388.

    Article  CAS  Google Scholar 

  • Palma-Guerrero, J., Lopez-Jimenez, J. A., Pérez-Berná, A. J., Huang, I.-C., Jansson, H.-B., Salinas, J., et al. (2010). Membrane fluidity determines sensitivity of filamentous fungi to chitosan. Molecular Microbiology, 75(4), 1021–1032.

    Article  CAS  PubMed  Google Scholar 

  • Pérez, W., Lara, J., & Forbes, G. A. (2009). Resistance to metalaxyl-M and cymoxanil in a dominant clonal lineage of Phytophthora infestans in Huánuco, Peru, an area of continuous potato production. European Journal of Plant Pathology, 125(1), 87–95.

    Article  Google Scholar 

  • Pluskal, T., Castillo, S., Villar-Briones, A., & Orešič, M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11(1), 395.

    Article  PubMed  PubMed Central  Google Scholar 

  • Randall, E., Young, V., Sierotzki, H., Scalliet, G., Birch, P. R. J., Cooke, D. E. L., et al. (2014). Sequence diversity in the large subunit of RNA polymerase I contributes to mefenoxam insensitivity in Phytophthora infestans. Molecular Plant Pathology, 15(7), 664–676.

    Article  CAS  PubMed  Google Scholar 

  • Riveros, F., Sotomayor, R., Rivera, V., Secor, G., & Espinoza, B. (2003). Resistance of Phytophthora infestans (Montagne) de Bary to metalaxyl in potato crops in northern Chile 1. Agricultura tecnica de Chile, 63(2), 117–124.

    Google Scholar 

  • Robson, G. D., Wiebe, M., Kuhn, P. J., & Trinci, A. P. J. (1990). Inhibitors of phospholipid biosynthesis. In P. J. Kuhn, A. P. J. Trinci, M. J. Jung, M. W. Goosey, & L. G. Copping (Eds.), Biochemistry of Cell Walls and Membranes in Fungi - Google Libros (1st ed., pp. 261–279). New York.

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol, 30, 2725–2729.

    CAS  Google Scholar 

  • Turk, M., Meanelle, L., Marjeta, A., Entjurc, Š., Grimalt, J. O., Gunde-Cimerman, N., & Plemenitasšalt, A. (2004). Induced changes in lipid composition and membrane fluidity of halophilic yeast - like melanized fungi. Extremophiles, 8, 53–61.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Guo, M., Min, F., Gao, Y., Xu, F., Yang, S., & Lu, D. (2012). Virulence complexity and high levels of fungicide resistance suggest population change of Phytophthora infestans in the Heilongjiang Province of China. Potato Research, 55(3–4), 217–224.

    Article  CAS  Google Scholar 

  • Warth, B., Parich, A., Bueschl, C., Schoefbeck, D., Neumann, N. K. N., Kluger, B., et al. (2015a). GC–MS based targeted metabolic profiling identifies changes in the wheat metabolome following deoxynivalenol treatment. Metabolomics, 11(3), 722–738.

    Article  CAS  PubMed  Google Scholar 

  • Warth, B., Parich, A., Bueschl, C., Schoefbeck, D., Neumann, N. K. N., Kluger, B., et al. (2015b). GC–MS based targeted metabolic profiling identifies changes in the wheat metabolome following deoxynivalenol treatment. Metabolomics, 11(3), 722–738.

    Article  CAS  PubMed  Google Scholar 

  • Yogendra, K. N., Kushalappa, A. C., Sarmiento, F., Rodriguez, E., Mosquera, T., Bassard, J., et al. (2014). Metabolomics deciphers quantitative resistance mechanisms in diploid potato clones against late blight. Functional Plant Biology, 42(3), 284–298.

    Google Scholar 

  • Yogendra, K. N., Kushalappa, A. C., Sarmiento, F., Rodriguez, E., & Mosquera, T. (2015). Metabolomics deciphers quantitative resistance mechanisms in diploid potato clones against late blight. Functional Plant Biology, 42(3), 284–298.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Escuela Superior Politécnica del Litoral (CIBE-ESPOL) and VLIR NETWORK Ecuador. Authors thank Jose Ochoa from the National Institute of Agricultural Research for donating the P. infestans isolates for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Manuel Cevallos-Cevallos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maridueña-Zavala, M.G., Freire-Peñaherrera, A., Cevallos-Cevallos, J.M. et al. GC-MS metabolite profiling of Phytophthora infestans resistant to metalaxyl. Eur J Plant Pathol 149, 563–574 (2017). https://doi.org/10.1007/s10658-017-1204-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1204-y

Keywords

Navigation