Skip to main content
Log in

A study on the synergetic effect of Bacillus amyloliquefaciens and dipotassium phosphate on Alternaria solani causing early blight disease of tomato

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

A study of the effect of bioagents and dipotassium phosphate (DPP) and their combination on early blight disease reduction under greenhouse conditions was conducted. Native bacterial isolates as bio-control agents exhibited control against early blight. Five bacterial isolates were tested against the pathogen. All isolates exhibited significant antagonistic activity against Alternariasolani, isolate “bact-03” showed significant in vitro inhibition (42.6%) and later was identified as Bacillus amyloliquefaciensby 16S rDNA gene analysis. Tests conducted on dipotassium phosphate (DPP) at different concentrations (10 mM, 25 mM, and 50 mM) showed mycelial growth inhibition 14.2%, 27.4%, and 54.8%, respectively. In vitro synergetic study on seed germination showed that the combination of DPP and B. amyloliquefaciens antagonized the pathogen. Vigor index was also significant in the combination (343.0) as well as DPP (299.0), and bioagent (426.6) compared to control (170.0). In the in vivo application of B. amyloliquefaciens, DPP combination showed significant disease reduction. However, disease severity on the plants treated with DPP was 35%, and the plants treated with B. amyloliquefaciens was 30% while in combination of both showed the disease severity up to 42% that was significantly lower than control (82%). Application of these bioagents and DPP also sustained the plant weight by promoting the growth and development of plant. The results of this study indicate that naturally existing bioagents along with the slats of potassium phosphate may provide promising control of early blight disease.. Due to their antagonistism, bacterial strains with the combination of salts can be used as bio-pesticides. Their applicationsimproves seed health and crop yield, but signaling relationship in pathogens, plants, and soil still needs to divulge to promote BCAs as encouraging bio-pesticides for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Kader, M. M., El-Mougy, N. S., & Lashin, S. M. (2013). Biological and chemical resistance inducers approaches for controlling foliar diseases of some vegetables under protected cultivation system. Journal of Plant Pathology and Microbiology, 4, 1–9.

    Google Scholar 

  • Abo-Elyousr, K.A.M., Hussein, M.A.M., Allam, A.D.A., Hassan, M.H.A. (2008). Enhanced onion resistance against stemphylium leaf blight disease, caused by Stemphyliumvesicarium, by di-potassium phosphate and benzothiadiazole treatments. Plant Pathology Journal, 24(2), 171–177.

  • Abo-Elyousr, K. A. M., & Hadeel, M. M. K. (2019). Biological control of the tomato wilt caused by Clavibactermichiganensis subsp michiganensis using formulated plant growth-promoting bacteria. Egyptian Journal of Biological Pest Control., 29, 54.

    Google Scholar 

  • Abo-Elyousr, K. A. M., & El-Hendawy H.-H. (2008). Integration of Pseudomonas fluorescens and acibenzolar-S-methyl to control bacterial spot disease of tomato. Crop Protection, 27, 1118–1124.

  • Abo-Elyousr, K. A. M., Najeeb, M. A., Ahmed, W. M. A., Sergio, R. R., & Khamis, Y. (2020). Plant extract treatments induce resistance to bacterial spot by tomato plants for a sustainable system. Horticulture, 6(36), 1–12.

    Google Scholar 

  • Ajilogba, C. F., Babalola, O. O., & Ahmad, F. (2013). Antagonistic effects of Bacillus species in biocontrol of tomato Fusarium wilt. Studies on Ethno-Medicine., 7(3), 205–216.

    Google Scholar 

  • Alexis, G., Dinka, M., & Mauricio, G. (2020). Isolation and identification of soil bacteria from extreme environments of chile and their plant beneficial characteristics. Microorganisms., 8, 1213.

    Google Scholar 

  • Arguelles-Arias, A., Ongena, M., Halimi, B., Lara, Y., Brans, A., Joris, B., et al. (2009). Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microbial Cell Factories., 8, 63. https://doi.org/10.1186/1475-2859-8-63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayşe, A., & Katirciolu, Y. (2008). Determination of pathogens causing damping-off and their pathogenicity in tomato seedbeds in Ankara (Ayaş, Beypazarı and Nallıhan districts) province. Plant Protection Bulletin., 48(2), 49–59.

    Google Scholar 

  • Bereika, F. F. M., Nashwa, M. A. S., Saad, A. M. A., Kamal, A.-E., Mohamed, H., & Yasser, S. M. (2020). Approving the biocontrol strategy of potato wilt caused by Ralstonia solanacearum on field scale using Enterobacter cloacae PS14 and Trichoderma asperellum T34. Egyptian Journal of Biological Pest Control, 30, 61.

    Google Scholar 

  • Bharath, B. G., Lokesh, S., & Shetty, H. S. (2005). Effects of fungicides and bioagents on seed Mycoflora, growth and yield of watermelon. Integrative Biosciences., 9(2), 75–78. https://doi.org/10.1080/17386357.2005.9647254

    Article  CAS  Google Scholar 

  • Bin, L., Shida, J., Huifang, Z., Yucheng, W., & Zhihua, L. (2020). Isolation of Trichoderma in the rhizosphere soil of Syringa oblata from Harbin and their biocontrol and growth promotion function. Microbiol Research., 235, 126445.

    Google Scholar 

  • Casals, C., Teixido, N., Vinas, I., Cambray, J., & Usall, J. (2010). Control of Monilinia spp. on stone fruit by curing treatments. Part II: The effect of host and Monilinia spp. variables on curing efficacy. Postharvest Biology and Technology., 56, 26–30.

    CAS  Google Scholar 

  • Chen, Y., Yan, F., Chai, Y., Liu, H., Kolter, R., Losick, R., et al. (2013). Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environmental Microbiology., 15, 848–864.

    PubMed  Google Scholar 

  • Diener, A. C., & Ausubel, F. M. (2005). Resistance to Fusariumoxysporum 1, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics, 171, 305–321.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dipak, T. N, Anil, P. G., &Lalan, S. (2013) Morphological and cultural characterization of Alternaria alternata (Fr) Keissler blight of gerbera (Gerbera jamesonii H Bolus ex JD Hook) Journal of Applied and Natural Science. 5 (1): 171–178.

  • Ehret, D. L., Menzies, J. G., Bogdanoff, C., Ukthede, R. S., & Frey, B. (2002). Foliar applications of fertilizer salts inhibit powdery mildew on tomato. Canadian Journal of Plant Pathology., 24, 437–444.

    CAS  Google Scholar 

  • El-Mougy, N. S., & Abdel-Kader, M. M. (2013). Effect of commercial cyanobacteria products on the growth and antagonistic ability of some bioagents under laboratory conditions. Journal of Pathogens., 2013(838329), 11.

    Google Scholar 

  • Esra, C., & Elif, T. (2019). Biological control of Alternariasolani in tomato. Fresenius Environmental Bulletin., 28(10), 7092–7100.

    Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791.

    PubMed  Google Scholar 

  • Freitas, M. A., Medeiros, F. H. V., Melo, I. S., Pereira, P. F., Peñaflor, M. F. G. V., Bento, J. M. S., et al. (2019). Stem inoculation with bacterial strains Bacillus amyloliquefaciens (GB03) and Microbacterium imperiale (MAIIF2a) mitigates fusarium root rot in cassava. Phytoparasitica, 47, 135–142.

    Google Scholar 

  • Gerhardt, P., Murray, R., Costilow, R., Nester, E. W., Wood, W. A., Krieg, N., & Phillips, G. B. (1981). Manual of Methods for General Bacteriology., 34(9), 1069.

    Google Scholar 

  • Grigolli, J. F. J., Kubota, M. M., Alves, D. P., Rodrigues, G. B., Cardoso, C. R., Henriques da Silva, D. J., & Mizubuti, E. S. G. (2011). Characterization of tomato accessions for resistance to early blight. Crop Breeding and Applied Biotechnology., 11, 174–180.

    Google Scholar 

  • Hanqin, X., Yongtao, L., Yanfei, C., Yu, C., & Yan, W. (2015). Isolation of Bacillus amyloliquefaciens JK6 and identification of its lipopeptides surfactin for suppressing tomato bacterial wilt. RSC Advances., 5, 82042–82049. https://doi.org/10.1039/C5RA13142A

    Article  CAS  Google Scholar 

  • Huang, J., Wei, Z., Tan, S., Mei, X., Shen, Q., & Xu, Y. (2014). Suppression of bacterial wilt of tomato by bioorganic fertilizer made from the antibacterial compound producing strain bacillus amyloliquefaciens HR62. Journal of Agriculture and Food Chemistry, 62, 10708–10716.

    CAS  Google Scholar 

  • Imran, M., Esmat, F. A., Kamal, A. M. A., Nashwa, M. A. S., Muhammad, M. M. K., & Muhammad, W. Y. (2021). Characterization and sensitivity of Botrytis cinerea to Benzimidazole and SDHI fungicides and illustration of resistance profile. Australasian Plant Pathology. https://doi.org/10.1007/s13313-021-00803-2

    Article  Google Scholar 

  • Karuppiah, V., Sun, J., Li, T., Vallikkannu, M., & Chen, J. (2019). Co-cultivation of Trichoderma asperellum GDFS1009 and Bacillus amyloliquefaciens 1841 Causes Differential Gene Expression and Improvement in the Wheat Growth and Biocontrol Activity. Frontiers in Microbiology, 10, 1068.

    PubMed  PubMed Central  Google Scholar 

  • Khalil, S. A. M., Nehal, S.-M., Nadia, G.-G., & Mokhtar, M.-K. (2020). Field approaches of chemical inducers and bioagents for controlling root diseases incidence of pea (Pisumsativum L.) under field conditions. The Plant Pathology Journal., 19(3), 166–175.

    CAS  Google Scholar 

  • Khan, N., Martínez-Hidalgo, P., Ice, T. A., Maymon, M., Humm, E. A., Nejat, N., Sanders, E. R., Kaplan, D., & Hirsch, A. M. (2018). Antifungal Activity of Bacillus Species against Fusarium and Analysis of the Potential Mechanisms Used in Biocontrol. Frontiers in Microbiology., 9, 2363.

    PubMed  PubMed Central  Google Scholar 

  • Kim, J., Rohlf, F. J., & Sokal, R. R. (1993). The accuracy of phylogenetic estimation using the neighbor-joining method. Evolution, 2, 471–486.

    Google Scholar 

  • Kim, P., Bai, H., Bai, D., Chae, H., Chung, S., Kim, Y., et al. (2004). Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. The Journal of Applied Microbiology., 97, 942–949. https://doi.org/10.1111/j.1365-2672.2004.02356.x

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution., 35, 1547–1549.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J., Yan, Q., Zhao, L. H., Zhang, S. M., Wang, Y. X., & Zhao, X. Y. (2009). Purification and characterization of a novel antifungal protein from Bacillus subtilis strain B29. The Journal of Zhejiang University Science b., 10, 264–272. https://doi.org/10.1631/jzus.B0820341

    Article  CAS  PubMed  Google Scholar 

  • Li, L., Ma, J., Li, Y., Wang, Z., Gao, T., & Wang, Q. (2012). Screening and partial characterization of Bacillus with potential applications in biocontrol of cucumber Fusarium wilt. Crop Protection., 35, 29–35.

    CAS  Google Scholar 

  • Lin, C., Tsai, C. H., Chen, P. Y., Wu, C. Y., Chang, Y. L., Yang, Y. L., et al. (2018). Biological control of potato common scab by Bacillus amyloliquefaciens Ba01. PLoS ONE, 13(4), e0196520. https://doi.org/10.1371/journal.pone.0196520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manandhar, H. K., Jorgensen, H. J. L., Mathur, S. B., & Smedegaard-Petersen, V. (1998). Resistance to rice blast induced by ferric chloride, dipotassium hydrogen phosphate and salicylic acid. Crop Protection., 17, 323–329.

    CAS  Google Scholar 

  • Marchesi, J. R., Sato, T., Weightman, A. J., Martin, T. A., Fry, J. C., Hiom, S. J., & Wade, W. G. (1998). Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rDNA. Applied and Environmental Microbiology., 64, 795–799.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merzoug, A., BeLABid, L., Youcef-BenkAdA, M., Benfreha, F., & Bayaa, B. (2014). Pea Fusarium wilt races in western Algeria. Plant Protection Science., 50, 70–77.

    Google Scholar 

  • Nashwa, S. M. A., & Abo-Elyousr, K. A. M. (2012). Evaluation of various plant extracts against the early blight disease of tomato plants under greenhouse and field conditions. Plant Protect Sci, 48(2), 75–80.

    Google Scholar 

  • Nigro, F., Schena, L., Ligorio, A., Pentimone, I., Ippolito, A., & Salerno, M. G. (2006). Control of table grape storage rots by pre-harvest applications of salts. Postharvest Biology and Technology., 42, 142–149.

    CAS  Google Scholar 

  • Orober, M., Siegrist, J., & Buchenauer, H. (2002). Mechanisms of phosphate-induced disease resistance in cucumber. European Journal of Plant Pathology., 108, 345–353.

    CAS  Google Scholar 

  • Pasche, J., Wharam, C., & Gudmestad, N. (2004). Shift in sensitivity of Alternariasolani in response to QoI fungicides. Plant Disease, 88, 181–187. https://doi.org/10.1094/pdis.2004.88.2.181

    Article  CAS  PubMed  Google Scholar 

  • Peters, R., Drake, K., Gudmestad, N., Pasche, J., & Shinners-Carnelley, T. (2008). First report of reduced sensitivity to a QoI fungicide in isolates of Alternariasolani causing early blight of potato in Canada. Plant Disease, 92, 1707–1707. https://doi.org/10.1094/pdis-92-12-1707b

    Article  CAS  PubMed  Google Scholar 

  • Pretorius, D., van Rooyen, J., & Clarke, K. G. (2015). Enhanced production of antifungal lipopeptides by Bacillus amyloliquefaciens for biocontrol of postharvest disease. New Biotechnology, 32, 243–252.

    CAS  PubMed  Google Scholar 

  • Priest, F. G., Goodfellow, M., Shute, L. A., & Berkeley, R. C. W. (1987). Bacillus amyloliquefaciensspnov, nom rev. International Journal of Systematic Bacteriology, 37, 69–71. https://doi.org/10.1099/00207713-37-1-69

    Article  Google Scholar 

  • Qiu, M., Wu, C., Ren, G., Liang, X., Wang, X., & Huang, J. (2014). Effect of chitosan and its derivatives as antifungal and preservative agents on postharvest green asparagus. Food Chemistry, 155, 105–111.

    CAS  PubMed  Google Scholar 

  • Reuveni, R., Dor, G., & Reuveni, M. (1998). Local and systemic control of powdery mildew (Leveillulataurica) on pepper plants by foliar spray of mono-potassium phosphate. Crop Protection, 17, 703–709.

    CAS  Google Scholar 

  • Reuveni, R., Dor, G., Raviv, M., Reuveni, M., & Tuzun, S. (2000). Systemic resistance against Sphaerothecafuliginea in cucumber plants exposed to phosphate in hydroponics system and its control by foliar spray of mono potassium phosphate. Crop Protection, 19, 355–361.

    CAS  Google Scholar 

  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Sambrook, J., Russell, D. W., Janssen, K., & Argentine, J. (2001). Molecular Cloning: A Laboratory Manual (3rd ed.). Cold Spring Harbor Laboratory.

    Google Scholar 

  • Sharma, R., Singh, D., & Singh, R. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists. A Review in Biological Control, 50, 205–221.

    Google Scholar 

  • Sharma-Poudyal, D., Paulitz, T. C., Porter, L. D., & du Toit, L. J. (2015). Characterization and pathogenicity of Rhizoctonia and Rhizoctonia-like spp. from pea crops in the Columbia basin of Oregon and Washington. Plant Disease, 99, 604–613.

    PubMed  Google Scholar 

  • Shashidar, A., Marc, O., Delphine, D., Edwin, D. P., Kunling, C., Sarosh, B., & Johan, M. (2017). Insights into the molecular basis of biocontrol of Brassica pathogens by Bacillus amyloliquefaciens UCMB5113 lipopeptides. Annals of Botany., 120, 551–562.

    Google Scholar 

  • Siahmoshteh, F., et al. (2017). Efficacy of Bacillus subtilis and Bacillus amyloliquefaciens in the control of Aspergillus parasiticus growth and aflatoxins production on pistachio. International Journal of Food Microbiology., 254, 47–53.

    CAS  PubMed  Google Scholar 

  • Siahmoshteh, F., Zohreh, H. E., Davide, S., Masoomeh, S. G., & Mehdi, R. A. (2018). Unraveling the mode of antifungal action of Bacillus subtilis and Bacillus amyloliquefaciens as potential biocontrol agents against aflatoxigenic Aspergillus parasiticus. Food Control, 89, 300–307.

    CAS  Google Scholar 

  • Somnath, K., Shyama, S. M., & Kole, P. C. (2015). In vitro efficacy of bio-control agents and botanicals on the growth inhibition of Alternariasolani causing early leaf blight of tomato. International Journal of Bio-Resource, Environment and Agricultural Sciences., 1(3), 114–118.

    Google Scholar 

  • Steel, R.G.D., Torrie, J.H., & Dickey, D.A. (1996) Principles and Procedures of Statistics: A Biometric Approach, 3rd ed, McGraw Hill Book Co. Inc.: New York, NY, USA

  • Stein, T. (2005). Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Molecular Microbiology., 56, 845–857.

    CAS  PubMed  Google Scholar 

  • Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA), 101, 11030–11035.

    CAS  Google Scholar 

  • Tan, S., Gu, Y., Yang, C., Dong, Y., Mei, X., Shen, Q., et al. (2016). Bacillus amyloliquefaciens T-5 may prevent Ralstonia solanacearum infection through competitive exclusion. Biology and Fertility of Soils, 52, 341–351.

    CAS  Google Scholar 

  • Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research., 25, 4876–4882.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Timmusk, S., Grantcharova, N., & Wagner, E. G. H. (2005). Paenibacilluspolymyxa invades plant roots and forms biofilms. Applied and Environmental Microbiology, 71, 7292–7300.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Umesh, P. M., & Sanjay, R. M. (2012). Efficacy of bioagents and fungicides on seed mycoflora, germination and vigour index of cowpea. Science Research Reporter., 2(3), 321–326.

    Google Scholar 

  • Umit, A. (2015). Evaluation of antifungal activity of mono and dipotassium phosphates against phytopathogenic fungi. Fresenius Environmental Bulletin., 24(3), 810–816.

    Google Scholar 

  • Urrea, R., Cabezas, L., Sierra, R., Cardenas, M., Restrepo, S., & Jimenez, P. (2011). Selection of antagonistic bacteria isolated from the Physalisperuvianarhizosphere against Fusariumoxysporum. Journal of Applied Microbiology., 111, 707–716.

    CAS  PubMed  Google Scholar 

  • Wang, W., Fang, Y., Imran, M., Hu, Z., Zhang, S., Huang, Z., & Liu, X. (2021). Characterization of the Field Fludioxonil Resistance and Its Molecular Basis in Botrytis cinerea from Shanghai Province in China. Microorganisms., 9, 266.

    PubMed  PubMed Central  Google Scholar 

  • Weber, B., & Halterman, D. A. (2012). Analysis of genetic and pathogenic variation of Alternariasolani from a potato production region. European Journal of Plant Pathology., 134, 847–858.

    Google Scholar 

  • Weitang, S., Ligang, Z., Chengzong, Y., Xiaodong, C., Liqun, Z., & Xili, L. (2004). Tomato Fusarium wilt and its chemical control strategies in a hydroponic system. Crop Protection, 23(3), 120–123.

    Google Scholar 

  • Xinyi, C., Yuanyuan, Z., Xuechi, F., Yan, L., & Qi, W. (2016). Isolation and characterization of Bacillus amyloliquefaciens PG12 for the biological control of apple ring rot. Postharvest Biology and Technology., 115, 113–121.

    Google Scholar 

  • Yang, W., Xu, Q., Liu, H. X., Wang, Y. P., Wang, Y. M., Yang, H. T., & Guo, J. H. (2012). Evaluation of biological control agents against Ralstonia wilt on ginger. Biological Control., 62, 144–151.

    Google Scholar 

  • Yazici, S., Yanar, Y., & Karaman, I. (2011). Evaluation of bacteria for biological control of early blight disease of tomato. African Journal of Biotechnology., 10(9), 1573–1577.

    Google Scholar 

  • Yi-Chun, C., & Cheng-Hua, H. (2020). Biocontrol of bacterial spot on tomato by foliar spray and growth medium application of Bacillus amyloliquefaciens and Trichodermaasperellum. European Journal of Plant Pathology., 156, 995–1003.

    Google Scholar 

  • Yurina, T. P., Karavaev, V. A., & Solntsev, M. K. (1993). Characteristics of metabolism in two cucumber cultivars with different resistance to powdery mildew. Russiun Plant Physiology, 40, 197–202.

    Google Scholar 

  • Zhang, C., Imran, M., Liu, M., Li, Z., Gao, H., Duan, H., Zhou, S., & Liu, X. (2020a). Two Point Mutations on CYP51 Combined With Induced Expression of the Target Gene Appeared to Mediate Pyrisoxazole Resistance in Botrytis cinerea. Frontiers in Microbiology., 11, 1396.

    PubMed  PubMed Central  Google Scholar 

  • Zhang, D., Yu, S., Yang, Y., Zhang, J., Zhao, D., Pan, Y., Fan, S., Yang, Z., & Zhu, J. (2020b). Antifungal Effects of Volatiles Produced by Bacillus subtilis Against Alternariasolani in Potato. Frontiers in Microbiology., 11, 1196.

    PubMed  PubMed Central  Google Scholar 

  • Zhao, Y., Zhang, W., Xu, W., Mai, K., Zhang, Y., & Liufu, Z. (2012). Effects of potential probiotic Bacillus subtilis T13 on growth, immunity and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus. Fish & Shellfish Immunology, 32, 750–755.

    CAS  Google Scholar 

  • Zhou, T. T., Chen, D., Li, C. Y., Sun, Q., Li, L. Z., Liu, F., Shen, Q., & Shen, B. (2012). Isolation and characterization of Pseudomonas brassicacearum J12 as an antagonist against Ralstoniasolanacearum and identification of its antimicrobial components. Microbiological Research., 167, 388–394.

    CAS  PubMed  Google Scholar 

  • Zhu, S. Y., & Hong, D. L. (2008). Comparison between two hybrid cultivars of indica rice (Oryza sativa L.) in seed vigor and biochemical traits after aging. Chinese Journal of Eco Agriculture., 16(2), 396–400.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Department of Arid Land Agriculture, Faculty of Meteorology,

Environment and Arid Land Agriculture for providing the lab facilities. We would like to express gratitude to the ministry of Education for providing scholarship for accomplishing the research work efficiently.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial,or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

KA-E, MI, MA and MMS the idea of the work and contributed to data curation and their validation as well as writing original draft. MI contributed to the formal analysis of the data all authors contributed to the reviewing and editing the manuscript. All authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Kamal A. M. Abo-Elyousr.

Ethics declarations

Conflict of interest

The authors declare that they do not have anyactual or potential conflict of interest.

Ethical approval

Our manuscript is original research and itis not submitted to full or in parts to other journal for publication.

Research involved in human and animal rights

The research did not involve any studies with humanparticipants or animal as experimental model.

Informed consent

All authors havereviewed the manuscript and approved the final version of manuscriptbefore submission.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imran, M., Abo-Elyousr, K.A.M., Mousa, M.A.A. et al. A study on the synergetic effect of Bacillus amyloliquefaciens and dipotassium phosphate on Alternaria solani causing early blight disease of tomato. Eur J Plant Pathol 162, 63–77 (2022). https://doi.org/10.1007/s10658-021-02384-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-021-02384-8

Keywords

Navigation