Skip to main content
Log in

Eutrophication conditions and ecological status in typical bays of Lake Taihu in China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Sampling was conducted at three site groups, group E (in East Taihu Bay), G (in Gonghu Bay) and M (in Meiliang Bay) in Lake Taihu. TN and TP concentrations among site groups was in the increasing order of E < G < M. TP level at G sites is at the critical threshold for loss of submersed macrophytes. Mean values of DO and Transparence showed different trend, i.e., E > G > M. The mean phytoplankton fresh-weight biomass at M sites was 5.81 mg/l, higher than that at E sites (4.96 mg/l) and G sites (5.18 mg/l). Mean zooplankton fresh-weight biomass was in the decreasing order of M (6.4 mg/l) > G (4.9 mg/l) > E (2.7 mg/l). However, Rotifera density was in the sequence of E > G > M. Both zooplankton biomass and phytoplankton biomass increased with the rise of TN and TP concentrations. Relationships between zooplankton biomass and phytoplankton biomass showed that zooplankton played a limited role in the control of algae in eutrophic lakes. Nutrient availability is much more important than zooplankton grazing pressure in controlling phytoplankton growth in lakes. For most sites in Lake Taihu, reduction of nutrient loading, as well as macrophyte conservation, zappears to be especially important in maintaining high water quality and regulating lake biological structure, but for M sites, it’s urgent to control nutrient inputs rather than to restore macrophyte community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Demeke, K., & Amha, B. (1990). Seasonal variation in phytoplankton primary production in relation to light and nutrients in Lake Awasa, Ethiopia. Hydrobiologia, 196, 217–227.

    Article  Google Scholar 

  • Elizabeth, O. M., Rojo, C., & Rodrigo, M. A. (2003). Controlling factors of phytoplankton assemblages in wetlands: An experimental approach. Hydrobiologia, 502, 177–186.

    Article  Google Scholar 

  • Fan, C. X. (1996). Historical evolution of water ecological setting in Taihu lake. Journal of Lake Sciences, 8, 297–304.

    Google Scholar 

  • Ghadouani, A., Alloul, B. P., Zhang, Y., & Prepas Eeghadouani, A. (1998). Relationships between zooplankton community structure and phytoplankton in two lime-treated eutrophic hardwater lakes. Freshwater Biology, 39(4), 775–790.

    Article  Google Scholar 

  • Gome, L. C., & Miranda, L. E. (2001). Hydrologic and climatic regimes limit phytoplankton biomass in reservoirs of the Upper Paraná River Basin, Brazil. Hydrobiologia, 457, 205–214.

    Article  Google Scholar 

  • Havens, K. E. (2003). Submerged aquatic vegetation correlations with depth and light attenuating materials in a shallow subtropical lake. Hydrobiologia, 493(1–3), 173–186.

    Article  Google Scholar 

  • Hu, H., Li, Y., Wei, Y., Zhu, H., Chen, J., & Shi, Z. (1980). Freshwater algae in China. Shanghai: Shanghai Science and Technology Press (in Chinese).

    Google Scholar 

  • Huszar, V. L. M., Silva, L. H. S., Domingos, P., Marinho, M., & Melo, S. (1998). Phytoplankton species composition is more sensitive than OECD criteria to the trophic status of three Brazilian tropical lakes. Hydrobiologia, 369–370, 59–71.

    Article  Google Scholar 

  • Hwang, S. J., Kim, H. S., Shin, J. K., Oh, J. M., & Kong, D.-S. (2004). Grazing effects of a freshwater bivalve (Corbicula leana Prime) and large zooplankton on phytoplankton communities in two Korean lakes. Hydrobiologia, 515, 161–179.

    Article  Google Scholar 

  • Jin, X. C., Liu, H. L., & Tu, Q. Y. (1990). Eutrophication of lakes in China (pp. 183–193). Beijing: China Environmental Science Press.

    Google Scholar 

  • Koenraad, M., Steven, D., Vanessa, G., Jeroen, W. V., Hanne, D., Jochen, V., et al. (2003). Zooplankton, phytoplankton and the microbial food web in two turbid and two clearwater shallow lakes in Belgium. Aquatic Ecology, 37(2), 137–150.

    Article  Google Scholar 

  • Luigi, N. F. (2000). Phytoplankton assemblages in twenty-one Sicilian reservoirs: Relationships between species composition and environmental factors. Hydrobiologia, 424, 1–11.

    Article  Google Scholar 

  • Peter, S., Jan, E. V., Jeroen, K., & Wolf, M. M. (2004). The effect of atmospheric carbon dioxide elevation on plant growth in freshwater ecosystems. Ecosystem, 7(1), 63–74.

    Article  Google Scholar 

  • Phlips, E. J., Zimba, P. V., Hopson, M. S., & Crisman, T. L. (1993). Dynamics of the plankton community in submerged plant dominated regions of Lake Okeechobee, Florida, U.S.A. Verhandlungen Internationale Vereinigung Limnologie, 25, 423–426.

    Google Scholar 

  • Qin, B., Hu, W., & Chen, W. (2004). The evolution process and mechanism of water environment of Taihu Lake. Beijing: Science Press of China.

    Google Scholar 

  • Romo, S., Miracle, M. R., Villena, M. J., Rueda, J., Ferriol, C., & Vicente, E. (2004). Mesocosm experiments on nutrient and fish effects on shallow lake food webs in a Mediterranean climate. Freshwater Biology, 49(12), 1593–1607.

    Article  CAS  Google Scholar 

  • Spencer, C. N., & Ellis, B. K. (1998). Role of nutrients and zooplankton in regulation of phytoplankton in Flathead Lake (Montana, USA), a large oligotrophic lake. Freshwater Biology, 39(4), 755–763.

    Article  Google Scholar 

  • Temponeras, M., Kristiansen, J., & Moustaka-Gouni, M. (2000). Seasonal variation in phytoplankton composition and physical–chemical features of the shallow Lake Doïrani, Macedonia, Greece. Hydrobiologia, 424, 109–122.

    Article  CAS  Google Scholar 

  • Tiina, N. (1997). Zooplankton–phytoplankton interactions in lakes Võrtsjärv, Peipsi (Estonia) and Yaskhan (Turkmenia). Hydrobiologia, 342–343, 175–184.

    Google Scholar 

  • Timothy, A., Renate, V., & Rebecca, Z. (2000). Influence of nutrient availability on phytoplankton growth and community structure in the Port Adelaide River, Australia: [2pt] Bioassay assessment of potential nutrient limitation. Hydrobiologia, 429, 89–103.

    Article  Google Scholar 

  • Tolonen, K. T., Holopainen, I. J., Hämäläinen, H., Rahkola-Sorsa, M., Ylöstalo, P., Mikkonen, K., et al. (2005). Littoral species diversity and biomass: Concordance among organismal groups and the effects of environmental variables. Biodiversity and Conservation, 14(4), 961–980.

    Article  Google Scholar 

  • Van Den Berg, M., Scheffer, M., & Coops, H. (1998). The role of characean algae in the management of eutrophic shallow lakes. Journal of Phycology, 34, 750–756.

    Article  Google Scholar 

  • Van Den Berg, M., Scheffer, M., Van Nes, E., & Coops, H. (1999). Dynamics and stability of Chara sp. and Potamogeton pectinatus in a shallow lake changing in eutrophication level. Hydrobiologia, 408/409, 335–342.

    Article  Google Scholar 

  • Vermaat, J. E., Santamaria, L., & Roos, P. J. (2000). Water flow across and sediment trapping in submerged macrophyte beds of contrasting growth form. Archiv für Hydrobiologie, 148, 549–562.

    CAS  Google Scholar 

  • Xu, F. L., Tao, S., & Xu, Z. R. (1999). The restoration of riparian wetlands and macrophytes in Lake Chao, an eutrophic Chinese lake: Possibilities and effects. Hydrobiologia, 405, 169–178.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, C., Xu, Q., Kong, H. et al. Eutrophication conditions and ecological status in typical bays of Lake Taihu in China. Environ Monit Assess 135, 217–225 (2007). https://doi.org/10.1007/s10661-007-9644-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-007-9644-z

Keywords

Navigation