Skip to main content
Log in

Evaluation of significant sources influencing the variation of water quality of Kandla creek, Gulf of Katchchh, using PCA

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

To evaluate the significant sources contributing to water quality parameters, we used principal component analysis (PCA) for the interpretation of a large complex data matrix obtained from the Kandla creek environmental monitoring program. The data set consists of analytical results of a seasonal sampling survey conducted over 2 years at four stations. PCA indicates five principal components to be responsible for the data structure and explains 76% of the total variance of the data set. The study stresses the need to include new parameters in the analysis in order to make the interpretation of principal components more meaningful. The PCA could be applied as a useful tool to eliminate multi-collinearity problems and to remove the indirect effect of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • APHA (1975). Standard methods for the examination of water and waste water (14th ed.). APHA-AWWA-WPCE, American Public Health, Washington DC20036.

  • Bengraine, K., & Marhaba, T. F. (2003). Using principal component analysis to monitor spatial and temporal changes in water quality. Journal of Hazardous Materials, B100, 179–195. doi:10.1016/S0304-3894(03)00104-3.

    Article  CAS  Google Scholar 

  • EGPH (1989). Environmental guidelines for ports and harbour projects. New Delhi: Govt. of India.

    Google Scholar 

  • Grasshoff, K., Ehrhardt, M., & Krimling, K. (1983). Methods of seawater analyses (Second revised and extended edition, 419 pp.). Weinheim: Verlag Chemie.

    Google Scholar 

  • Grossman, G. D., Nicckerso, D. M., & Freeman, M. C. (1991). Principal component analyses of assemblages structure data: Utility of tests based on eigenvalues. Ecology, 72(1), 341–347. doi:10.2307/1938927.

    Article  Google Scholar 

  • Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M., & Fernandez, L. (2000). Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Research, 34, 807–816. doi:10.1016/S0043-1354(99)00225-0.

    Article  CAS  Google Scholar 

  • Jackson, D. A. (1993). Stopping rules in principal components analysis: A comparison of heuristical and statistical approaches. Ecology, 74, 2201–2214.

    Google Scholar 

  • Kennish, M. J. (1992). Ecology of estuaries: Anthropogenic effects (494 pp.). Florida: CRC.

    Google Scholar 

  • Morales, M. M., Mart, P., Llopis, A., Campos, L., & Sagrado, J. (1999). An environmental study by factor analysis of surface seawater in the Gulf of Valencia (western Mediterranean). Analytica Chimica Acta, 394, 109–117. doi:10.1016/S0003-2670(99)00198-1.

    Article  CAS  Google Scholar 

  • Petersen, W., Bertino, L., Callies, U., & Zorita, E. (2001). Process identification by principal component analysis of river water-quality data. Ecological Modelling, 138, 193–213. doi:10.1016/S0304-3800(00)00402-6.

    Article  CAS  Google Scholar 

  • Ross, P. J. (1988). Taguchi techniques for quality engineering. New York: McGraw-Hill.

    Google Scholar 

  • Schramm, W., & Nienhuis, P. H. (1996). Marine benthic vegetation: Recent changes and the effects of eutrophication (470 pp.). Berlin: Springer.

    Google Scholar 

  • Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., et al. (2003). Assessment of the surface water quality in Northern Greece. Water Research, 37, 4119–4124. doi:10.1016/S0043-1354(03)00398-1.

    Article  CAS  Google Scholar 

  • Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India): A case study. Water Research, 38, 3980–3992. doi:10.1016/j.watres.2004.06.011.

    Article  CAS  Google Scholar 

  • Stevens, J. (1986). Applied multivariate statistics for the social science (515 pp.). Hillsdale: Erlbaum.

    Google Scholar 

  • Vega, M., Pardo, R., Barrado, E., & Deban, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32, 3581–3592. doi:10.1016/S0043-1354(98)00138-9.

    Article  CAS  Google Scholar 

  • Williams, K. K., & Titus, K. (1988). Assessment and sampling stability in ecological applications of discriminate analysis. Ecology, 69(4), 1275–1285. doi:10.2307/1941283.

    Article  Google Scholar 

  • Wunderlin, D. A., Diaz, M. P., Ame, M. V., Pesce, S. F., Hued, A. C., & Bistoni, M. (2001). Pattern recognition techniques for the evaluation of spatial and temporal variation in water quality. A case study: Suquia river basin (Cordoba Argentina). Water Research, 35, 2881–2894. doi:10.1016/S0043-1354(00)00592-3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Dalal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalal, S.G., Shirodkar, P.V., Jagtap, T.G. et al. Evaluation of significant sources influencing the variation of water quality of Kandla creek, Gulf of Katchchh, using PCA. Environ Monit Assess 163, 49–56 (2010). https://doi.org/10.1007/s10661-009-0815-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0815-y

Keywords

Navigation