Skip to main content

Advertisement

Log in

Assessment of water quality in the Messolonghi–Etoliko and Neochorio region (West Greece) using hydrochemical and statistical analysis methods

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Assessment of the water quality can enhance understanding of the hydrochemical system and effective management of water resources. To this end, an assessment of water quality was conducted in the Messolonghi–Etoliko and Neochorio region. Surface water and groundwater samples have been collected, treated, and subjected to chemical analysis for the following parameters: Br − , Cl − , F − , NO\(_{2}^{-}\), NO\(_{3}^{-}\), PO\(_{4}^{3-}\), SO\(_{4}^{2-}\), Li + , Na + , NH\(_{4}^{+}\), K + , Mg 2+ , Ca 2+ , HCO\(_{3}^{-}\), Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn. A characterization has been carried out using the Piper trilinear diagram, the United States Salinity Laboratory diagram, and the Wilcox diagram. Assessment of water samples by comparing the recorded values of the water quality parameters with the parametric values established by European Community indicated that the 50% of the surface water samples and 67% of the groundwater samples in the study area are chemically suitable for drinking use. Assessment of water samples from calculation of chemical indexes like sodium adsorption ratio, sodium percentage, residual sodium carbonate, and by comparing the values of the water quality parameters with the water quality limits established by Canadian Council of Minister of the Environment indicated that 75% of the surface water and that all the groundwater samples are chemically suitable for irrigation use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aghazadeh, N., & Mogaddam, A. A. (2010). Investigation of hydrochemical characteristics of groundwater in the Harzandat aquifer, northwest of Iran. Environmental Monitoring and Assessment. doi:10.1007/s10661-010-1575-4.

    Google Scholar 

  • Alexakis, D. (2008). Geochemistry of stream sediments as a tool for assessing contamination by arsenic, chromium and other toxic elements: East Attica region, Greece. European Water, 21/22, 57–72. (Available online at www.ewra.net).

    Google Scholar 

  • Alexakis, D., & Tsakiris, G. (2010). Drought impacts on karstic spring annual water potential. Application on Almyros (Heraklion Crete) brackish spring. Desalination and Water Treatment, 16, 1–9. doi:10.5004/dwt.2010.1065.

    Google Scholar 

  • Appelo, C. A. J., & Postma, D. (2005). Geochemistry, groundwater and pollution (2nd Ed.). Rotterdam: Balkema.

    Book  Google Scholar 

  • Bathrellos, G. D., Skilodimou, H. D., Kelepertsis, A., Alexakis, D., Chrisanthaki, I., & Archonti, D. (2007). Environmental research of groundwater in the urban and suburban areas of Attica region, Greece. Environmental Geology, 58, 11–18. doi:10.1007/s00254-007-1135-6.

    Google Scholar 

  • CCME (Canadian Council of Minister of the Environment) (1999). Canadian water quality guidelines for the protection of agricultural water uses. Canadian Environmental Quality Guidelines, Pub. No. T/528.

  • Dar, I. A., Sankar, K., & Dar, M. A. (2010). Spatial assessment of groundwater quality in Mamundiyar basin, Tamil Nadu, India. Environmental Monitoring and Assessment. doi:10.1007/s10661-010-1702-2.

    Google Scholar 

  • Davis, S. N., & DeWiest, R. J. (1966). Hydrogeology. New York: Wiley.

    Google Scholar 

  • EC (European Community) (1998). Council Directive 98/83/EC Directive of the European Parliament on the quality of water intended for human consumption. The European Parliament and the Council of the European Union, Official Journal L 330, 03/11/1998.

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. New Jersey: Prentice-Hall.

    Google Scholar 

  • Hajizadeh Namaghi, H., Karami, G. H., & Saadat, S. (2011). A study on chemical properties of groundwater and soil in ophiolitic rocks in Firuzabad, east of Shahrood, Iran: With emphasis to heavy metal contamination. Environmental Monitoring and Assessment, 174 573–583. doi:10.1007/s10661-010-1479-3.

    Article  Google Scholar 

  • Hamzaoui-Azaza, F., Ketata, M., Bouhlila, R., Gueddari, M., & Riberio, L. (2011). Hydrogeochemical characteristics and assessment of drinking water quality in Zeuss–Koutine aquifer, southeastern Tunisia. Environmental Monitoring and Assessment, 174, 283–298. doi:10.1007/s10661-010-1457-9.

    Article  CAS  Google Scholar 

  • IGME (1989). Echinades Sheet. Geological Map 1:50000, Department of Geological Maps. Athens: Institute of Geology and Mineral Exploration.

    Google Scholar 

  • IGME (1991). Evinokhorion Sheet. Geological Map 1:50000, Department of Geological Maps. Athens: Institute of Geology and Mineral Exploration.

    Google Scholar 

  • IGME (1998). Messolonghion Sheet. Geological Map 1:50000, Department of Geological Maps. Athens: Institute of Geology and Mineral Exploration.

    Google Scholar 

  • Karapiperis, L. (1974). Rainfall distribution in Greece. Bulletin of the Geological Society of Greece, 11, 1–27.

    Google Scholar 

  • Kelepertsis, A., Alexakis, D., & Kita, I. (2001). Environmental geochemistry of soils and waters of Susaki area, Korinthos, Greece. Environmental Geochemistry and Health, 23, 117–135. doi:10.1023/A:1010904508981.

    Article  CAS  Google Scholar 

  • Kumar, S. K., Rammohan, V., Sahayam, J., & Jeevanandam, M. (2009). Assessment of groundwater quality and hydrogeochemistry of Manimuktha River basin, Tamil Nadu, India. Environmental Monitoring and Assessment, 159, 341–351. doi:10.1007/s10661-008-0633-7.

    Article  CAS  Google Scholar 

  • Lambrakis, N. (2006). Multicomponent heterovalent chromatography in aquifers. Modelling salinization and freshening phenomena in field conditions. Journal of Hydrology, 323, 230–243.

    Article  Google Scholar 

  • Langmuir, D. (1997). Aqueous environmental geochemistry. New York: Prentice Hall, Inc.

    Google Scholar 

  • Palma, P., Alvarenga, P., Palma, V., Fernandes, R. M. , Soares, A. M. V. M., & Barbosa, I. R. (2010). Assessment of anthropogenic sources of water pollution using multivariate statistical techniques: A case study of the Alqueva’s reservoir, Portugal. Environmental Monitoring and Assessment, 165, 539–552. doi:10.1007/s10661-009-0965-y.

    Article  CAS  Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). User’s guide to PHREEQC (Version 2)—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Water-Resources Investigations Report 99-4259.

  • Ragunath, H. M. (1987). Groundwater (2nd Edn). New Delhi: Wiley Eastern Ltd.

    Google Scholar 

  • Richards, L. A. (1954). Diagnosis and improvement of saline alkali soils: Agriculture (Vol. 160, Handbook 60). Washinghton DC: U.S. Department of Agriculture.

    Google Scholar 

  • Saeedi, M., Abessi, O., Sharifi, F., & Meraji, H. (2010). Development of groundwater quality index. Environmental Monitoring and Assessment, 163, 327–335. doi:10.1007/s10661-009-0837-5.

    Article  CAS  Google Scholar 

  • Sawyer, G. N., McMcartly, D. L., & Parkin, G. F. (2003). Chemistry for environmental engineering and science. New York: McGraw Hill.

    Google Scholar 

  • Stamatis, G., & Gartzos, E. (1999). The silica supersaturated waters of northern Evia and eastern central Greece. Hydrological Processes, 13, 2833–2845.

    Article  Google Scholar 

  • Stamatis, G., Lambrakis, N., Alexakis, D., & Zagana, E. (2006). Groundwater quality in eastern Attica (Greece). Hydrological Processes, 20, 2803–2818. doi:10.1012/hyp.6072.

    Article  CAS  Google Scholar 

  • Suthar, S., Sharma, J., Chabukdhara, M., & Nema, A. K. (2010). Water quality assessment of river Hindon at Ghaziabad, India: Impact of industrial and urban wastewater. Environmental Monitoring and Assessment, 165, 103–112. doi:10.1007/s10661-009-0930-9.

    Article  CAS  Google Scholar 

  • Tank, D. K., & Chandel, C. P. S. (2010). A hydrochemical elucidation of the groundwater composition under domestic and irrigated land in Jaipur City. Environmental Monitoring and Assessment, 166, 69–77. doi:10.1007/s10661-009-0985-7.

    Article  CAS  Google Scholar 

  • USSL (1954). Diagnosis and improvement of salinity and alkaline soil. USDA Hand Book no. 60, Washington.

  • Wilcox, L. V. (1955). Classification and use of irrigation water (p. 969). Washington: USDA, Circular.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris Alexakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexakis, D. Assessment of water quality in the Messolonghi–Etoliko and Neochorio region (West Greece) using hydrochemical and statistical analysis methods. Environ Monit Assess 182, 397–413 (2011). https://doi.org/10.1007/s10661-011-1884-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-1884-2

Keywords

Navigation