Skip to main content

Advertisement

Log in

Integrating biophysical and socioeconomic information for prioritizing watersheds in a Kashmir Himalayan lake: a remote sensing and GIS approach

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Dal Lake, a cradle of Kashmiri civilization has strong linkage with socioeconomics of the state of Jammu and Kashmir. During last few decades, anthropogenic pressures in Dal Lake Catchment have caused environmental deterioration impairing, inter-alia, sustained biotic communities and water quality. The present research was an integrated impact analysis of socioeconomic and biophysical processes at the watershed level on the current status of Dal Lake using multi-sensor and multi-temporal satellite data, simulation modelling together with field data verification. Thirteen watersheds (designated as ‘W1–W13’) were identified and investigated for land use/land cover change detection, quantification of erosion and sediment loads and socioeconomic analysis (total population, total households, literacy rate and economic development status). All the data for the respective watersheds was integrated into the GIS environment based upon multi-criteria analysis and knowledge-based weightage system was adopted for watershed prioritization based on its factors and after carefully observing the field situation. The land use/land cover change detection revealed significant changes with a uniform trend of decreased vegetation and increased impervious surface cover. Increased erosion and sediment loadings were recorded for the watersheds corresponding to their changing land systems, with bare and agriculture lands being the major contributors. The prioritization analysis revealed that W5 > W2 > W6 > W8 > W1 ranked highest in priority and W13 > W3 > W4 > W11 > W7 under medium priority. W12 > W9 > W10 belonged to low-priority category. The integration of the biophysical and the socioeconomic environment at the watershed level using modern geospatial tools would be of vital importance for the conservation and management strategies of Dal Lake ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Amin, A. & Romshoo, S.A. (2007). Assessing the hydrologic characteristics of Dal Lake catchment using GIS. In: Proceedings of TAAL 2007: the 12th World Lake Conference (pp. 659–667).

  • Arhounditsis, G., Giourga, C., Loumou, A., & Koulouri, M. (2002). Quantitative assessment of agricultural runoff and soil erosion using mathematical modeling: application in the Mediterranean region. Environmental Management, 30(3), 434–453.

    Google Scholar 

  • Badar, B. & Romshoo, S.A. (2007). Assessing the pollution load of Dal Lake using geospatial tools. In: Proceedings of TAAL 2007: the 12th World Lake Conference (pp. 668–679).

  • Bagnolus, F. & Meher-Homji, V.M. (1959). Bio-climatic types of south East Asia. Travaux de la Section Scientific at Technique Institut Franscis de Pondicherry. (p. 227).

  • Ballatore, T. J., & Muhandiki, V. S. (2002). The case for a world lake vision. Hydrological Processes, 16(11), 2079–2089.

    Google Scholar 

  • Barnes, P.L. (1997). Row crop pollution in North-East Kansas, Kansas State University, Kansas. GISdevelopment > Proceedings > ACRS > 1997. www.GISdevelopment.net. Accessed 14 Dec 2008.

  • Bhat, D. K. (1989). Geology of Karewa basin (p. 122). Kashmir: Geological Survey of India Records.

    Google Scholar 

  • Bhat, G. A., Qadri, M., & Zutshi, D. P. (2002). An ecological survey of Dachigam National Park, Kashmir with emphasis on grasslands. In A. K. Pandit (Ed.), Natural resources of Western Himalaya (pp. 341–376). Hazratbal: Valley Book House.

    Google Scholar 

  • Biswas, S., Sudhakar, S., & Desai, V. R. (1999). Prioritization of subwatersheds based on morphometric analysis of drainage basin—a remote sensing and GIS approach. Journal of Indian Society of Remote Sensing, 27, 155–156.

    Google Scholar 

  • Brown, L. R. (1984). Conserving soils. In L. R. Brown (Ed.), State of the world (pp. 53–75). New York: Norton.

    Google Scholar 

  • Buckle, P., Mars, G. and Samle, S. (2006). New approaches to assessing vulnerability and resilience. Australian Journal of Emergency Management (Winter): 8–14.

  • Burrough, P. A. (1986). Principles of geographic information systems for land resources assessment. Oxford: Oxford Press.

    Google Scholar 

  • Data, N.K. (1983). Geology, evolution and hydrocarbon prospectus of Kashmir valley. Petroleum Asia Journal, 176–177.

  • Dinar, A., Seidl, S., Olem, H., Jordan, V., Duda, A., & Johnson, R. (1995). Restoring and protecting the World’s Lakes and Reservoirs. World Bank, Technical Paper No. 289. World Bank, Washington, DC.

  • Duker, L. (2001). A literature review of the state of the World’s lakes and a proposal for a new framework for prioritizing lake conservation work. LakeNet Working Paper Series, No. 1, LakeNet: Annapolis, MD.

  • Dunne, T., Dietrich, W. E., & Bruengo, M. J. (1978). Recent and past erosion rates in semi-arid Kenya. Zeitschrift fur geomorphologie. Supplement Band, 29, 215–230.

    Google Scholar 

  • EPA. (2003a). Modeling report for Wissahickon Creek, Pennsylvania. Philadelphia: Siltation TDML Development Final Report. US Environmental Protection Agency.

    Google Scholar 

  • EPA. (2003b). Nutrient and sediment TMDAL development for the unnamed tributary to Bush run and upper portions of Bush Run Allegheny and Washington counties. Philadelphia: United States Environmental Protection Agency.

    Google Scholar 

  • Evans, B. M., Lehning, D. W., Corradini, K. J., Petersen, G. W., Nizeyimana, E., Hamlett, J. M., et al. (2002). A comprehensive GIS-based modeling approach for predicting nutrient load in a watershed. Spatial Hydrology, 2(2), 1–18.

    Google Scholar 

  • Evans, B. M., Lehning, D. W., & Corradini, K. J. (2008). AVGWLF version 7.1: users guide. Penn State Institute of energy and environment (p. 117). University Park: The Pennsylvania State University.

    Google Scholar 

  • FAO. (1980). Crop transpiration: Guidelines for computing crop water requirement. (p. 56) Rome.

  • FAO. (1985). Watershed development with special reference to soil and water conservation. Rome: FAO. FAO Soil Bulletin 44.

    Google Scholar 

  • Fohrer, N., Haverkamp, S., Eckhardt, K., & Frede, G. G. (2001). Hydrologic response to land use changes on the catchment scale. Physics and Chemistry of the Earth, 26(7–8), 577–582.

    Google Scholar 

  • Frankenberger, J. R., Brook, E. S., Walter, M. T., Walter, M. F., & Steenhuis, T. S. (1999). A GIS-based variable source area hydrology model. Hydrological Processes, 13, 805–822.

    Google Scholar 

  • Gosain, A. K., & Rao, S. (2004). GIS-based technologies for watershed management. Current Science, 87, 948–953.

    Google Scholar 

  • Guerra, F., Puig, H., & Chaune, R. (1998). The Forest-Savannah dynamics from multi-data LANDSAT-TM data in Sierra Parima, Venezuela. International Journal of Remote Sensing, 19(11), 2061–2075.

    Google Scholar 

  • Haan, C. T. (1972). A water yield model for small watersheds. Water Resources Research, 8(1), 58–69.

    Google Scholar 

  • Haith, D. A. (1987). Evaluation of daily rainfall erosivity model. Transactions of American Society of Agricultural Engineering, 30(1), 90–93.

    Google Scholar 

  • Haith, D. A., & Shoemaker, L. L. (1987). Generalized watershed loading functions for stream flow nutrients. Water Resources Bulletin, 23(3), 471–478.

    Google Scholar 

  • Haith, D.A., Mandel, R. & Shyan, Wu. R. (1992). Generalized watershed loading function model: users’ manual. Ithaca, New York, USA 14853.

  • Hamon, W. R. (1961). Estimating potential evapotranspiration. ASCE Journal of the Hydraulics Division, 87(HY3), 107–120.

    Google Scholar 

  • Hansen, A. J., De Fries, R., Turner, W., et al. (2004). Land use change and biodiversity: a synthesis of rates and consequences during the period of satellite imagery. In G. Gutman & C. Justice (Eds.), Land change science: observing, monitoring and understanding trajectories of change on the Earth’s surface (pp. 277–299). New York: Springer.

    Google Scholar 

  • Honore, G. (1999). Our land, ourselves—a guide to watershed management in India (p. 238). New Delhi: Government of India.

    Google Scholar 

  • ILEC. (2005). Managing lakes and their basins for sustainable use: a report for lake basin managers and stakeholders. Kusatsu: International Lake Environment Committee Foundation.

    Google Scholar 

  • Janetos, A. C., & Justice, C. O. (2000). Land cover global productivity: a measurement strategy for the NASA programme. International Journal of Remote Sensing, 21(6&7), 1491–1512.

    Google Scholar 

  • Jorgensen, S. E., DeBernardi, R., Ballatore, T. J., & Muhandiki, V. S. (2003). Lake Watch 2003: The changing state of the World’s lakes. Kusatsu: International Lake Environment Committee.

    Google Scholar 

  • Kaul, V. (1977). Limnological survey of Kashmir lakes with reference to trophic status and conservation. International Journal of Ecology and Environmental Science, 3, 29–44.

    CAS  Google Scholar 

  • Kaul, V. (1979). Water characteristics of some fresh water bodies of Kashmir. Current Trends in Life Science, 9, 221–246.

    Google Scholar 

  • Khan, M. A. (1993a). Occurrence of a rare euglenoid causing red-bloom in Dal Lake waters of the Kashmir Himalaya. Archiv für Hydrobiologie, 127, 101–103.

    Google Scholar 

  • Khan, M. A. (1993b). Euglenoid red bloom contributing the environmental pollution of Dal Lake, Kashmir Himalaya. Environmental Conservation, 20, 352–356.

    Google Scholar 

  • Khan, M. A. (2000). Anthropogenic eutrophication and red tide outbreak in lacustrine systems of the Kashmir Himalaya. Acta Hydrochemicha et Hydrobiologica (Weinheim), 28, 95–101.

    CAS  Google Scholar 

  • Khan, M. A. (2008). Chemical environment and nutrient fluxes in a flood plain wetland ecosystem, Kashmir Himalayas, India. Indian Forester, 134(4), 505–514.

    CAS  Google Scholar 

  • Khan, S., & Romshoo, S. A. (2008). Integrated analysis of geomorphic, pedologic and remote sensing data for digital soil mapping. Journal of Himalayan Ecology and Sustainable Development, 3(1), 39–50.

    Google Scholar 

  • Khan, M. A., Gupta, V. P., & Moharana, P. C. (2001). Watershed prioritization using remote sensing and Geographical Information System: a case study from Guhiya, India. Journal of Arid Environment, 49, 465–475.

    Google Scholar 

  • Kira, T. (1997). Survey of the state of world lakes. In S. E. Jorgensen & S. Matsui (Eds.), Proceedings of international conference on guidelines of lake management: the world’s lakes in crisis, no. 8. Kusatsu: International Lake Environment Committee and United Nations Environment Programme.

    Google Scholar 

  • Lee, K. Y., Fisher, T., & Rochelle, N. E. (2001). Modeling the hydrochemistry of the Choptank River basin using GWLF and Arc/Info: 2. Model validation and application. Biochemistry, 56(3), 311–348.

    CAS  Google Scholar 

  • Lemke, K. A. (1991). Transfer function models of suspended sediment concentrations. Water Resources Research, 27(3), 293–305.

    Google Scholar 

  • Loeb, S.L. (1988). Evidence of land use impacts on water quality within the Lake Tahoe Basin, in Conservation District. pp. 25–41.

  • Lundqvist, J. (1998). Avert looming hydrocide. Ambio, 27(6), 428–433.

    Google Scholar 

  • Matheussen, B., Kirschbaum, R. L., Goodman, I. A., O’Donnell, G. M., & Lettenmaier, D. P. (2000). Effects of land use change on stream flow in the interior Columbia River Basin (USA and Canada). Hydrological Processes, 14(5), 867–885.

    Google Scholar 

  • Mkhonta, M.M. (2000). Use of remote sensing and Geographic Information System (GIS) in the assessment of soil erosion in the Gwayimane and Mahhuku catchment areas with special attention on soil erodibility (K-Factor). Masteral Thesis, International Institute for Geo-information Science and Earth Observation Enschede, The Netherlands. GISdevelopment > Proceedings > ACRS > 2000. www.GISdevelopment.net. Accessed 10 Jan 2008.

  • Moldan B, Billharz S, Matrazers R (1997). Sustainabillity indicators. SCOPE 58, Paris, France.

  • Montanarella L, Jones RJA, Knijff JM (2000). Soil erosion risk assessment in Europe. The European Soil Bureau.

  • Moore, I. D., Grayson, R. B., & Ladson, A. R. (1977). Digital terrain modelling. In K. J. Beven & I. D. More (Eds.), A review of hydrological, geomorphological and biological applications (pp. 7–31). Chichester: Wiley.

    Google Scholar 

  • Ouyang, D. & Bartholic, J. (2001). Web-based GIS application for soil erosion prediction. In: Proceedings of an International Symposium—Soil Erosion Research for the 21st Century. Honolulu, HI. Jan. 3–5.

  • Pandit, A. K. (1996). Lakes in Kashmir Himalaya. In H. Abrar, Khan, K. Ashok, & Pandit (Eds.), Ecology, environment and energy (pp. 1–40). Srinagar: University of Kashmir.

    Google Scholar 

  • Pandit, A. K. (1998). Trophic evolution of lakes in Kashmir Himalayas: Conservation of lakes in Kashmir Himalayas. In A. K. Pandit (Ed.), Natural resources in Kashmir Himalayas (pp. 178–214). Srinagar: Valley Book House.

    Google Scholar 

  • Pandit, A. K. (1999). Fresh water ecosystems of the Himalayas. London: Parthenon Publishing.

    Google Scholar 

  • Pandit, A. K., & Fotedar, D. N. (1982). Restoring damaged wetlands for wildlife. Journal of Environmental Management (London) 14, 359–368.

  • Pandit, A. K., & Qadri, S. S. (1990). Floods threatening Kashmir wetlands. Journal of Environmental Management, 3(4), 299–311.

    Google Scholar 

  • Pavanelli, D., & Bigi, A. (2004). Indirect analysis method to estimate suspended sediment concentration: reliability and relationship of turbidity and settleable solids. Biosystem Engineering, 3, 45–53.

    Google Scholar 

  • Peters, N. E., & Maybeck, M. (2000). Water quality degradation effects on freshwater availability: impacts of human activities. Water International, 25(2), 185–193.

    Google Scholar 

  • Piper, C. S. (1966). Soil and plant analysis. Bombay: Hans Publishers.

    Google Scholar 

  • Prasad, B., Honda, S.K. & Murai, S. (1997). Sub-watershed prioritization of watershed management using remote sensing and GIS. http://www.gisdevelopment.net/AARS/ACRS/Waterresources. Accessed 15 Mar 2009.

  • Quilbe, R., Rousseau, A. N., Moquet, J. S., Savary, S., Ricard, S., & Garbouj, M. S. (2008). Hydrological response of a watershed to historical land use evolution and future land use scenario under climate change conditions. Hydrology and Earth System Science, 12, 101–110.

    Google Scholar 

  • Rishi, V. (1982). Ecology of a stream of Doodhganga Catchment Area (Kashmir Himalayas). Ph.D. Thesis. University of Kashmir.

  • Rodriguez, E., Morris, C. S., & Belz, J. E. (2006). A global assessment of SRTM performance. Photogrammetric Engineering and Remote Sensing, 72, 249–260.

    Google Scholar 

  • Romshoo, S. A. (2003). Radar remote sensing for monitoring of dynamic ecosystem processes related to the biogeochemical exchanges in tropical peatlands. Visual Geoscience, 8, 63–82.

    Google Scholar 

  • Rutherford, I. (2000). Some human impacts on Australian stream channel morphology. In S. Brizga & B. Finlayson (Eds.), River management: The Australasian experience. Chicester: Wiley.

    Google Scholar 

  • Sahai, B. (1988). Remote sensing in rural development. Journal of the Indian Society of Remote Sensing, 16, 5–12.

    Google Scholar 

  • SCS. (1986). Urban hydrology for small watersheds. Soil Conservation Service, 55(2).

  • Shah, S. A., & Bhat, G. A. (2004). Land use pattern in Dal-Dachigam Catchment. Journal of Research and Development, 4, 21–33.

    Google Scholar 

  • Shamsi, U. M. (1996). Storm-water management implementation through modeling and GIS. Journal of Water Resources Planning and Management, 122(2), 114–127.

    Google Scholar 

  • Singh, G. R., & Prakash, O. (1985). Characteristics and erodibility of some hill soils in Uttar Pradesh under varying land use, slope and terracing conditions. Journal of the Indian Society of Soil Science, 33, 858–864.

    Google Scholar 

  • Steward, B. A., Woolhiser, D. A., Wischmeir, W. H., Carol, J. H., & Frere, M. H. (1975). Control of water pollution from cropland. Washington: US Environmental Protection Agency.

    Google Scholar 

  • Stoate, C., Boatman, N. D., Borralho, R. J., Carvalho, C. R., De Snoo, G. R., & Eden, P. (2001). Ecological impacts of arable intensification in Europe. Journal of Environmental Management, 63, 337–365.

    CAS  Google Scholar 

  • Strobe, R.O. (2002). Water quality monitoring network design methodology for the identification of critical sampling points. Ph.D Thesis. Department of Agriculture and Biological Engineering. The Pennsylvania State University, Pennsylvania. p. 44.

  • Tang, Z., Engel, B. A., Pıjanowskı, B. C., & Lim, K. J. (2005). Forecasting land use change and its environmental impact at a watershed level. Journal of Environmental Management, 76, 35–45.

    CAS  Google Scholar 

  • Tekle, K., & Hedlund, L. (2000). Land cover changes between 1958 and 1986 in Kalu District, Southern Wello, Ethiopia. Mountain Research and Development, 20(1), 42–51.

    Google Scholar 

  • Thuman, O. E., Andrew, & Rees, T. A. (2003). Watershed and water quality modeling. Indianapolis: Analytical report, Triad Engineering Incorporated. 46219.

    Google Scholar 

  • Tong, S., & Chen, W. (2002). Modeling the relationship between land use and surface water quality. Journal of Environmental Management, 66, 377–393.

    Google Scholar 

  • Tong, S.T.Y., Liu, A.J. and Goodrich, J.A. 2008. Assessing the water quality impacts of future land-use changes in an urbanizing watershed. Civil Engineering and Environmental Systems. www.informaworld.com. Accessed 14 Aug 2010.

  • Toogood, J. A. (1958). A simplified textural classification diagram. Canadian Journal of Soil Science, 38, 54–55.

    Google Scholar 

  • Trisal, C. L. (1987). Ecology and conservation of Dal Lake, Kashmir. Water Resource Development, 3(1), 44–54.

    Google Scholar 

  • Tucker, G. E., & Bras, R. L. (1998). Hill slope processes, drainage density and landscape morphology. Water Resources Research, 34(10), 2751–2764.

    Google Scholar 

  • Van Rompaey, A. J. J., Govers, G., Van Hecke, E., & Jacobs, K. (2001). The impacts of land use policy on the soil erosion risk: a case study in Central Belgium. Agriculture Ecosystem. Environment, 83, 83–94.

    Google Scholar 

  • Van Sickle, J., & Beschta, R. L. (1983). Supply-based models of suspended sediment transport in streams. Water Resources Research, 19(3), 768–778.

    Google Scholar 

  • Vanoni, V. A. (1975). Sediment engineering. New York: American Society of Civil Engineers.

    Google Scholar 

  • Varadan, V. K. S. (1977). Geology and mineral resources of the state of India part X Jammu and Kashmir State. Geological Survey of India, 30, 1–71.

    Google Scholar 

  • Veihmeyer, F. J., & Hendricjson, A. H. (1931). The moisture equivalent as a measure of the field capacity of soils. Soil Sciences, 32, 181–194.

    CAS  Google Scholar 

  • Vieux, B. E., & Farajalla, N. S. (1994). Capturing the essential spatial variability in distributed hydrological modelling: hydraulic roughness. Hydrological Processes, 8, 221–236.

    Google Scholar 

  • Vittala, S. S., Govindaiah, S., & Gowda, H. H. (2008). Prioritization of sub-watersheds for sustainable development and management of natural resources: an integrated approach using remote sensing, GIS and socio-economic data. Current Science, 95(3), 345–354.

    Google Scholar 

  • Wadia, D. N. (1971). Geology of India (p. 344). New Delhi: McGraw Hill.

    Google Scholar 

  • Walkley, A., & Black, C. A. (1934). An examination of the Degljareff method for determination of soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–39.

    CAS  Google Scholar 

  • Wischmeier, W.H. & Smith, D.D. (1978). Predicting rainfall erosion losses: a guide to conservation planning. US Department of Agriculture, Washington DC. Agricultural Handbook No. 537.

  • World Lake Vision Committee. (2003). World lake vision, international lake environment committee and international environment technology centre. Kusatsu: United Nations Environment Program.

    Google Scholar 

  • Young, R.A., Onstad, C.A., Bosch, D.D, & Anderson, W.P. (1987). AGNPS, agricultural nonpoint source pollution model: a watershed analysis tool. Conservation Research Report No. 35, U.S. Department of Agriculture, Agricultural Research Service, Washington, D.C.

  • Yuskel, A., Gundogan, R., & Akay, A. E. (2008). Using the remote sensing and GIS technology for erosion risk mapping of Kartalkaya Dam Watershed in Kahramanmaras, Turkey. Sensors, 8, 4851–4865.

    Google Scholar 

  • Zutshi, D.P. & Khan, M.A. (1978). On Lake Typology of Kashmir. Environmental Physiology and Ecology of Plants, 465–472.

  • Zutshi, D. P., & Yousuf, A. R. (2000). Ecology and conservation of Dal Lake. Report prepared for AHEC (p. 105). Roorkee: University of Roorkee.

    Google Scholar 

  • Zutshi, D. P., Kaul, V., & Vass, K. K. (1972). Limnological studies of high altitude Kashmir lakes. Verhandlugen der Internationale Vereinigung fur theoretische und Augewandte Limnologie, 118, 599–604.

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Indian Meteorological Department and Division of Agronomy, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar for providing hydrometrological data for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bazigha Badar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badar, B., Romshoo, S.A. & Khan, M.A. Integrating biophysical and socioeconomic information for prioritizing watersheds in a Kashmir Himalayan lake: a remote sensing and GIS approach. Environ Monit Assess 185, 6419–6445 (2013). https://doi.org/10.1007/s10661-012-3035-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-3035-9

Keywords

Navigation