Skip to main content
Log in

The use of a natural coagulant (Opuntia ficus-indica) in the removal for organic materials of textile effluents

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The goal of this study was to investigate the activity of the coagulant extracted from the cactus Opuntia ficus-indica (OFI) in the process of coagulation/flocculation of textile effluents. Preliminary tests of a kaolinite suspension achieved maximum turbidity removal of 95 % using an NaCl extraction solution. Optimization assays were conducted with actual effluents using the response surface methodology (RSM) based on the Box–Behnken experimental design. The responses of the variables FeCl3, dosage, cactus dosage, and pH in the removal of COD and turbidity from both effluents were investigated. The optimum conditions determined for jeans washing laundry effluent were the following: FeCl3 160 mg L−1, cactus dosage 2.60 mg L−1, and pH 5.0. For the fabric dyeing effluent, the optimum conditions were the following: FeCl3 640 mg L−1, cactus dosage 160 mg L−1, and pH 6.0. Investigation of the effects of the storage time and temperature of the cactus O. ficus-indica showed that coagulation efficiency was not significantly affected for storage at room temperature for up to 4 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aber, S., Salari, D., & Parsa, M. R. (2010). Employing the Taguchi method to obtain the optimum conditions of coagulation-flocculation process in tannery wastewater treatment. Chemical Engineering Journal, 162, 127–134.

    Article  CAS  Google Scholar 

  • Ahmad, A. L., Wong, S. S., Teng, T. T., & Zuhairi, A. (2007). Optimization of coagulation–flocculation process for pulp and paper mill effluent by response surface methodological analysis. Journal of Hazardous Materials, 145, 162–168.

    Article  CAS  Google Scholar 

  • Ahmadi, M., Vahabzadeh, F., Bonakdarpour, B., Mofarrah, E., & Mehranian, M. (2005). Application of the central composite design and response surface methodology to the advanced treatment of olive oil processing wastewater using Fento’s peroxidation. Journal of Hazardous Materials, 123, 187–195.

    Article  CAS  Google Scholar 

  • Bhatia, S., Othman, Z., & Ahmad, A. L. (2007). Coagulation-floculation process for POME treatment using Moringa oleifera seeds extract: optimization studies. Chemical Engineering Journal, 133, 205–212.

    Article  CAS  Google Scholar 

  • Cunnif, P. A. (1998). Official methods of analysis of AOAC International (6th Ed.) Arlington: Association of Official Analytical Chemists.

  • Dallago, R. M., & Smaniotto, A. (2005). Resíduos sólidos de curtumes como adsorventes para a remoção de corantes em meio aquoso. Quimica Nova, 28, 433–437.

    Article  CAS  Google Scholar 

  • Devrimci, H. Y., Yuksel, A. M., & Sanin, F. D. (2012). Algal alginate: a potential coagulant for drinking water treatment. Desalination, 299, 16–21.

    Article  CAS  Google Scholar 

  • Diaz, A., Rincon, N., Escorihuela, A., Fernandez, N., Chacin, E., & Forster, C. F. (1999). A preliminary evaluation of turbidity removal by natural coagulants indigenous to Venezuela. Process Biochemical, 35, 391–395.

    Article  CAS  Google Scholar 

  • Divakaran, R., & Pillai, V. N. S. (2002). Flocculation of river silt using chitosan. Water Research, 36, 2414–2418.

    Article  CAS  Google Scholar 

  • Folch, J., Less, M., & Stanley, G. H. S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry, 226, 497–509.

    CAS  Google Scholar 

  • Garcia, J. C., Oliveira, J. L., Silva, A. E. C., Oliveira, C. C., Nozaki, J., & Souza, N. E. (2007). Comparative study of the degradation of real textile effluents by photocatalytic reactions involving UV/TiO2/H2O2 and UV/Fe2+/H2O2 systems. Journal of Hazardous Materials, 147, 105–110.

    Article  CAS  Google Scholar 

  • Garcia, J. C., Simionato, J. I., Almeida, V. C., Palacio, S. M., Rossi, F. L., Schneider, M. V., et al. (2009a). Evolutive follow-up of the photocatalytic degradation of real textile effluents in TiO2 and TiO2/H2O2 systems and their toxic effects on Lactuca sativa seedlings. Journal of the Brazilian Chemical Society, 20, 1589–1597.

    Article  CAS  Google Scholar 

  • Garcia, J. C., Simionato, J. I., Silva, A. E. C., Nozaki, J., & Souza, N. E. (2009b). Solar photocatalytic degradation of real textile effluents by associated titanium dioxide and hydrogen peroxide. Solar Energy, 83, 316–322.

    Article  CAS  Google Scholar 

  • Ghafari, S., Aziz, H. A., Isa, M. H., & Zinatizadeh, A. A. (2009). Application of response surface methodology (RSM) to optimize coagulation-flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. Journal of Hazardous Materials, 163, 650–656.

    Article  CAS  Google Scholar 

  • Greenberg, A. E., Clesceri, L. S., & Eaton, A. D. (1992). Standard methods for the examination of water and wastewater (8th ed., pp. 5.1–5.15). Apha, Awwa, WEF: Washington.

    Google Scholar 

  • Guaratini, C. C. I., & Zanoni, M. V. B. (2000). Corantes têxteis. Quimica Nova, 23(1), 71–77.

    Article  CAS  Google Scholar 

  • Islam, M. F., & Lye, L. M. (2009). Combined use of dimensional analysis and modern experimental design methodologies in hydrodynamics experiments. Ocean Engineering, 36, 237–247.

    Article  Google Scholar 

  • Khayet, M., Zahrim, A. Y., & Hilal, N. (2011). Modelling and optimization of coagulation of highly concentrated industrial grade leather dye by response surface methodology. Chemical Engineering Journal, 167, 77–83.

    Article  CAS  Google Scholar 

  • Kousha, M., Daneshvar, E., Dopeikar, H., Taghavi, D., & Bhatnagar, A. (2012). Box-Benhken design optimization of acid Black 1 dye biosorption by different brown macroalgae. Chemical Engineering Journal, 179, 158–168.

    Article  CAS  Google Scholar 

  • Letterman, R. D., & Pero, R. W. (1990). Contaminants in polyelectrolytes used in water treatment. Journal of the American Water Works Association, 82, 87–97.

    CAS  Google Scholar 

  • Miller, S. M., Fugate, E. J., Craver, V. O., Smith, J. A., & Zimmerman, J. B. (2008). Toward understanding the efficacy and mechanism of Opuntia ssp. as a natural coagulant for potential application in water treatment. Environmental Science Technology, 42, 4274–4279.

    Article  CAS  Google Scholar 

  • Myers, R. H., & Montgomery, D. C. (2002). Response surface methodology: process end product optimization using designed experiments (2nd ed.). New York: Wiley & Sons. John 440.

    Google Scholar 

  • Ndabigengesere, A., Narasiah, K. S., & Talbot, B. G. (1995). Active agents and mechanism of coagulation of turbid waters using Moringa oleifera. Water Research, 29, 703–710.

    Article  CAS  Google Scholar 

  • Noordin, M. Y., Venkatesh, V. C., Elting, S., & Abdullah, A. (2004). Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel. Journal of Materials Processing Technology, 145, 46–58.

    Article  CAS  Google Scholar 

  • Okuda, T., Baes, A. U., Nishjima, W., & Okada, M. (1999). Improvement of extraction method of coagulation active components from Moringa oleifera seed. Water Research, 33, 3373–3378.

    Article  CAS  Google Scholar 

  • Pinheiro, H. M., Touraud, E., & Thomas, O. (2004). Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes and Pigments, 61(2), 121–139.

    Article  CAS  Google Scholar 

  • Prasad, R. K. (2009). Color removal from distillery spent wash though coagulation using Moringa oleifera seeds: use of optimum response methodology. Journal of Hazardous Materials, 165, 804–811.

    Article  CAS  Google Scholar 

  • Rodrigues, A. C., Boroski, M., Shimada, N. S., Garcia, J. C., Nozaki, J., & Hioka, N. (2008). Treatment of paper pulp and paper mill wastewater by coagulation-flocculation followed by heterogeneous photocatalysis. Journal of Photochemistry and Photobiology, A: Chemistry, 194, 1–10.

    Article  CAS  Google Scholar 

  • Rossini, M., Garrido, J. G., & Galluzzo, M. (1999). Optimization of the coagulation-flocculation treatment: influence of rapid mix parameters. Water Research, 33, 1817–1826.

    Article  CAS  Google Scholar 

  • Sanghi, R., Bhattacharya, B., Dixit, A., & Singh, V. (2006). Ipomoea dasysperma seed gum: an effective natural coagulant for the decolorization of textile dye solutions. Journal of Environmental Management, 81, 36–41.

    Article  CAS  Google Scholar 

  • Senthilkumar, M., Gnanapragasam, G., Arutchelvan, V., & Nagarajan, S. (2011a). Influence of hydraulic retention time in a two-phase upflow anaerobic sludge blanket reactor treating textile dyeing effluent using effluent as the co-substrate. Environmental Science and Pollution Research, 18, 649–654.

    Article  CAS  Google Scholar 

  • Senthilkumar, M., Gnanapragasam, G., Arutchelvan, V., & Nagarajan, S. (2011b). Treatment of textile dyeing wastewater using two-phase pilot plant UASB reactor with sago wastewater as co-substrate. Chemical Engineering Journal, 166, 10–14.

    Article  CAS  Google Scholar 

  • Simionato, J. L., Paulino, A. T., Garcia, J. C., & Nozaki, J. (2006). Adsorption of aluminium from wastewater by chitin and chitosan produced from silkworm chrysalides. Polymer International, 55, 1243–1248.

    Article  CAS  Google Scholar 

  • Stephenson, R. J., & Duff, S. J. B. (1996). Coagulation and precipitation of a mechanical pulping effluent—I. Removal of carbon, colour and turbidity. Water Research, 30, 781–792.

    Article  CAS  Google Scholar 

  • Yin, C. Y. (2010). Emerging usage of plant-based coagulants for water and wastewater treatment. Process Biochemical, 45, 1437–1444.

    Article  CAS  Google Scholar 

  • Zhang, J., Zhang, F., Luo, Y., & Yang, H. (2006). A preliminary study on cactus coagulant in water treatment. Process Biochemical, 41, 730–733.

    Article  CAS  Google Scholar 

  • Zhao, Y. X., Wang, Y., Gao, B. Y., Shon, H. K., Kim, J. H., & Yue, Q. Y. (2012). Coagulation performance evaluation of sodium alginate used as coagulant aid with aluminum sulfate, iron chloride and titanium tetrachloride. Desalination, 299, 79–88.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge CNPq, Fundação Araucária, and CAPES for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Carla Garcia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, M.T.F., Ambrosio, E., de Almeida, C.A. et al. The use of a natural coagulant (Opuntia ficus-indica) in the removal for organic materials of textile effluents. Environ Monit Assess 186, 5261–5271 (2014). https://doi.org/10.1007/s10661-014-3775-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3775-9

Keywords

Navigation