Skip to main content
Log in

Effects of selective withdrawal on hydrodynamics and water quality of a thermally stratified reservoir in the southern side of the Mediterranean Sea: a simulation approach

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study uses a multidisciplinary approach to simulate the spatial and temporal patterns of hydrodynamics and water quality in a thermally stratified reservoir in the southern side of the Mediterranean Sea in response to water withdrawal elevation using the 2D water quality and laterally averaged hydrodynamic model CE-QUAL-W2. The withdrawal elevation controls largely the transfer of heat and constituents in the dam in particular during thermal stratification. Fifteen scenarios of withdrawal elevation are possible. To identify the most effective scenarios, a hierarchical clustering technique was performed and only four scenarios were clustered. Deep withdrawals deepen the hypoxia, increase the thickness of the metalimnion, and weaken the stratification stability, which facilitate the vertical transfer of heat and dissolved oxygen mainly. Surface withdrawals, however, shrink the metalimnion and tend to strengthen the stratification, resulting in less transfer of matter from the epilimnion to the hypolimnion. Most of the bottom sediment is overlaid by the hypolimnion. The oxygen depletes significantly and waters become anoxic at a few meters depth. For all scenarios, the reservoir experiences a summer hypolimnetic anoxia, which lasts from 42 to 80 days and seems to decrease as withdrawal elevation increases. At the end of stratification, waters below the withdrawal elevation showed a noticeable release of iron, nutrients, and suspended sediments that increases with depth and near-bottom turbulence. Attention should be drawn to shallower withdrawals because they accumulate nutrients and silts continuously in the reservoir, which may deteriorate water quality. Based on these results, a withdrawal elevation rule is presented. This rule may be adjusted to optimize water withdrawal elevation for dams in the region with similar geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Afshar, A., & Saadatpour, M. (2009). Reservoir eutrophication modeling, sensitivity analysis, and assessment: application to Karkheh reservoir, Iran. Environmental Engineering Science, 26(7), 1227–1238. doi:10.1089/ees.2008.0319.

    Article  CAS  Google Scholar 

  • Ahmad, S., & Simonovic, S. P. (2004). Spatial system dynamics: new approach for simulation of water resources systems. Journal of Computing in Civil Engineering, 18(4), 331–340. doi:10.1061/(ASCE) 0887-3801(2004)18:4(331).

    Article  Google Scholar 

  • Anderson, M. A., Komor, A., & Ikehata, K. (2014). Flow routing with bottom withdrawal to improve water quality in Walnut Canyon Reservoir, California. Lake and Reservoir Management, 30(2), 131–142. doi:10.1080/10402381.2014.898720.

    Article  CAS  Google Scholar 

  • APHA. (1995). Standard methods for the examination of water and wastewater (19th ed.). Washington: American Public Health Association/American Water Works Association/Water Environment Federation.

    Google Scholar 

  • Aquaveo. (2012). Surface modelling system user guide. Utah. Accessed 21 Jul 2013.

  • Blue Marble Geographics (2012). Global mapper (version 14.1.7). http://www.bluemarblegeo.com/products/global-mapper.php. Accessed 1 Aug 2014.

  • Botelho, D. A., & Imberger, J. (2007). Dissolved oxygen response to wind–inflow interactions in a stratified reservoir. Limnology and Oceanography, 52(5), 2027–2052. doi:10.4319/lo.2007.52.5.2027.

    Article  CAS  Google Scholar 

  • Brooks, N. H., & Koh, R. C. Y. (1969). Selective withdrawal from density stratified reservoirs. Journal of the Hydraulics Division, 95(HY4), 1369–1400.

    Google Scholar 

  • Caliskan, A., & Elci, S. (2009). Effects of selective withdrawal on hydrodynamics of a stratified reservoir. Water Resources Management, 23(7), 1257–1273. doi:10.1007/s11269-008-9325-x.

    Article  Google Scholar 

  • Casamitjana, X., Serra, T., Colomer, J., Baserba, C., & Perez-Losada, J. (2003). Effects of the water withdrawal in the stratification patterns of a reservoir. Hydrobiologia, 504, 21–28. doi:10.1023/B:HYDR.0000008504.61773.77.

    Article  Google Scholar 

  • Chung, S. W., & Oh, J. K. (2006). Calibration of CE-QUAL-W2 for a monomictic reservoir in a monsoon climate area. Water Science & Technology, 54(11–12), 29–37. doi:10.2166/wst.2006.841.

    Article  CAS  Google Scholar 

  • Cole, T. M., & Wells, S. A. (2014). CE-QUAL-W2: a two-dimensional, laterally averaged, hydrodynamic and water quality model, version 3.7. Vicksburg: U.S. Army Engineering and Research Development Center, 792p.

  • Diogo, P. A., Fonseca, M., Coelho, P. S., Mateus, N. S., Almeida, M. C., & Rodrigues, A. C. (2014). Reservoir phosphorous sources evaluation and water quality modeling in a transboundary watershed. Desalination, 226(1–3), 200–214.

    Google Scholar 

  • Dortch, M. S. (1997). Water quality consideration in reservoir management, US Army Engineer Waterways Experiment Station. http://ucowr.org/files/Achieved_Journal_Issues/V108_A3Flood%20Control%20Operations.pdf. Accessed 1 Aug 2014.

  • Fan, J. (2008). Stratified flow through outlets. Journal of Hydro-Environment Research, 2, 3–18. doi:10.1016/j.jher.2008.04.001.

    Article  Google Scholar 

  • FAO (1994). Water quality for agriculture, 29 Rev. 1.1994. p 174. ISBN 92-5-102263-1.

  • Fort, P. (2012). Propriétés caractéristiques de l’air humide. http://www.dimclim.fr/air-humide.php. Accessed 1 Aug 2014.

  • Gao, X., Li, G., & Han, Y. (2014). Effect of flow rate of side-type orifice intake on withdrawn water temperature. The Scientific World Journal, 1–8, doi:10.1155/2014/979140.

  • Ginocchio, R., & Viollet, P. L. (2012). In Lavoisier (Ed.), L’énergie hydraulique (2nd ed.). France: Collection EDF R&D. ISBN 978-2-7430-1191-8. 632p.

    Google Scholar 

  • Golden Software (2012). Surfer (version 12). http://www.goldensoftware.com/products/surfer. Accessed 1 Aug 2014.

  • Horn, A. L., Francisco, J. R., Hörmann, G., & Fohrer, N. (2014). Implementing river water quality modelling issues in mesoscale watershed models for water policy demands—an overview on current concepts, deficits, and future tasks. Physics and Chemistry of the Earth, Parts A/B/C, Anthropogenic Impacts on Catchment Processes, 29(11–12), 725–737.

    Google Scholar 

  • Hoyer, A. B., Moreno-Ostos, E., Vidal, J., Blanco, J. M., Palomino-Torres, R. L., Basanta, A., Escot, C., & Rueda, F. J. (2009). The influence of external perturbations on the functional composition of pytoplankton in a Mediterranean reservoir. Hydrobiologia, 636, 49–64. doi:10.1007/s10750-009-9934-2.

    Article  Google Scholar 

  • Huang, Y. (2014). Multi-objective calibration of a reservoir water quality model in aggregation and non-dominated sorting approaches. Journal of Hydrology, 510, 280–292. doi:10.1016/j.jhydrol.2013.12.036.

    Article  Google Scholar 

  • Huisman, J., Sharples, J., Stroom, J. M., Visser, P. M., Kardinaal, W. E. A., Verspagen, J. M. H., & Sommeijer, B. (2004). Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology, 85(11), 2960–2970.

    Article  Google Scholar 

  • Jeznach, L. C., & Tobiason, J. E. (2015). Future climate effects on thermal stratification in the Wachusett reservoir. Journal-American Water Works Association. 107, (in press), doi.org/10.5942/jawwa.2015.107.0039.

  • Julian, D. O., & Naiman, R. J. (2010). Incorporating thermal regimes into environmental flows assessments: modifying dam operations to restore freshwater ecosystem integrity. Freshwater Biology, 55, 86–107. doi:10.1111/j.1365-2427.2009.02179.x.

    Article  Google Scholar 

  • Kennedy, R. H. (1999). Reservoir design and operation: limnological implications and management opportunities. In T. JG & M. Straskraba (Eds.), Theoretical reservoir ecology and its applications (pp. 1–28). Leiden: Backhuys.

    Google Scholar 

  • Kerachian, R., & Karamouz, M. (2007). A stochastic conflict resolution model for water quality management in reservoir–river systems. Advances in Water Resources, 30, 866–882. doi:10.1016/j.advwatres.2006.07.005.

    Article  Google Scholar 

  • Kunz, M. J., Senn, D. B., Wehrli, B., Mwelwa, E. M., & Wüest, A. (2013). Optimizing turbine withdrawal from a tropical reservoir for improved water quality in downstream wetlands. Water Resources Research, 49, 5570–5584. doi:10.1002/wrcr.20358.

    Article  Google Scholar 

  • Lee, F. Z., Lai, J. S., Tan, Y. C., & Sung, C. C. (2014). Turbid density current venting through reservoir outlets. Journal of Civil Engineering, 8(2), 694–705. doi:10.1007/s12205-014-0275-y.

    Google Scholar 

  • Lehman, E. M., McDonald, K. E., & Lehman, J. T. (2009). Whole lake selective withdrawal experiment to control harmful cyanobacteria in an urban impoundment. Water Research, 43, 1187–1198. doi:10.1016/j.watres.2008.12.007.

    Article  CAS  Google Scholar 

  • Lehmana, J. T. (2014). Understanding the role of induced mixing for management of nuisance algal blooms in an urbanized reservoir. Lake and Reservoir Management, 30(1), 63–71. doi:10.1080/10402381.2013.872739.

    Article  Google Scholar 

  • Liu, W. C., & Chen, W. B. (2012). Modeling hydrothermal, suspended solids transport and residence time in a deep reservoir. International Journal of Environmental Science and Technology, 10, 251–260. doi:10.1007/s13762-012-0147-2.

    Article  Google Scholar 

  • Lorenzen, C. J. (1967). Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnolpgy and Oceanography, 12(2), 343–346.

    Article  CAS  Google Scholar 

  • Ma, S., Kassinos, S. C., Fatta Kassinos, D., & Akylas, E. (2008). Effects of selective water withdrawal schemes on thermal stratification in Kouris Dam in Cyprus. Lakes & Reservoirs: Research & Management, 13, 51–61. doi:10.1111/j.1440-1770.2007.00353.x.

    Article  Google Scholar 

  • Ma, J., Liuc, D., Wells, S. A., Tang, H., Ji, D., & Yang, Z. (2015). Modeling density currents in a typical tributary of the Three Gorges Reservoir, China. Ecological Modelling, 296, 113–125. doi:10.1016/j.ecolmodel.2014.10.030.

    Article  Google Scholar 

  • Martin, J. (1988). Application of two-dimensional water quality model. Journal of Environmental Engineering, 114, 317–336. doi:10.1061/(ASCE)0733-9372(1988)114:2(317).

    Article  CAS  Google Scholar 

  • Martin, D. B., & Arneson, R. D. (1978). Comparative limnology of a deep discharge reservoir and a surface discharge lake on the Madison River (Montana). Freshwater Biology, 8, 33–42. doi:10.1111/j.1365-2427.1978.tb01423.x.

    Article  CAS  Google Scholar 

  • Molisani, M. M., Becker, H., Barroso, H. S., Hijo, C. A. G., Monte, T. M., Vasconcellos, G. H., & Lacerda, L. D. (2013). The influence of Castanhão reservoir on nutrient and suspended matter transport during rainy season in the ephemeral Jaguaribe River (CE, Brazil). Brazilian Journal of Biology, 73(1), 115–123. doi:10.1590/S1519-69842013000100013.

    Article  CAS  Google Scholar 

  • Morgan, F. L., Olivera, A., & Callisto, M. (2006). Inventory of benthic macroinvertebrates diversity in the Environmental Station Reservoir of Minas Gerais, Brazil. Neotropical Biology and Conservation, 1(1), 17–23.

    Google Scholar 

  • Norton, G. E., & Bradford, A. (2009). Comparison of two stream temperature models and evaluation of potential management alternatives for the Speed River, Southern Ontario. Journal of Environmental Management, 90(2), 866–878. doi:10.1016/j.jenvman.2008.02.002.

    Article  Google Scholar 

  • Nürnberga, G. K. (2007). Lake responses to long-term hypolimnetic withdrawal treatments. Lake and Reservoir Management, 23(4), 388–409. doi:10.1080/07438140709354026.

    Article  Google Scholar 

  • Park, S. S., & Lee, Y. S. (2002). A water quality modeling study of the Nakdong River, Korea. Ecological Modelling, 152(1), 65–75. doi:10.1016/S0304-3800(01)00489-6.

    Article  CAS  Google Scholar 

  • Park, Y., Hwa, C., Kang, K., Won, J. H., Lee, S., & Kim, J. H. (2014). Developing a flow control strategy to reduce nutrient load in a reclaimed multi-reservoir system using a 2D hydrodynamic and water quality model. Science of the Total Environment, 466–467, 871–880. doi:10.1016/j.scitotenv.2013.07.041.

    Article  Google Scholar 

  • Parsa, J., & Etmad-Shahidi, A. (2011). An empirical model for salinity intrusion in alluvial estuaries. Ocean Dynamics, 61(10), 1619–1628. doi:10.1007/s10236-011-0457-9.

    Article  Google Scholar 

  • Rangel-Peraza, J. G., Obregon, O., Nelson, J., Williams, G. P., De Anda, J., González-Farías, F., & Miller, J. (2012). Modelling approach for characterizing thermal stratification and assessing water quality for a large tropical reservoir. Lakes and Reservoirs: Research and Management, 17(2), 119–129. doi:10.1111/j.1440-1770.2012.00503.x.

    Article  CAS  Google Scholar 

  • Sami, R., Soussi, M., Kamel, B., Kmar, B. I.-L., Stow, D., Sami, K., & Mourad, B. (2010). Stratigraphy, sedimentology and structure of the Numidian Flysch thrust belt in northern Tunisia. Journal of African Earth Sciences, 57, 109–126. doi:10.1016/j.jafrearsci.2009.07.016.

    Article  CAS  Google Scholar 

  • Shokri, A., Haddad, O. B., & Mariño, M. A. (2014). Multi-objective quantity–quality reservoir operation in sudden pollution. Water Resources Management, 28(2), 567–586. doi:10.1007/s11269-013-0504-z.

    Article  Google Scholar 

  • Talbi, F., Melki, F., Kmar, B. I.-L., Alouani, R., & Tlig, S. (2008). Le Numidien de la Tunisie septentrionale: données stratigraphiques et interprétation géodynamique [The Numidian of northern Tunisia: stratigraphic data and geodynamic interpretation]. Estudios Geológicos, 64(1), 31–44.

    Article  Google Scholar 

  • Wang, S., Qiana, X., Hanb, B. P., Luo, L. C., & Hamilton, D. P. (2012). Effects of local climate and hydrological conditions on the thermal regime of a reservoir at Tropic of Cancer, in southern China. Water Research, 46, 2591–2604. doi:10.1016/j.watres.2012.02.014.

    Article  CAS  Google Scholar 

  • Ward, J. H., Jr. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244.

    Article  Google Scholar 

  • Warnken, K. W., Gill, G. A., Santschi, P. H., & Griffin, L. L. (2000). Benthic exchange of nutrients in Galveston Bay, Texas. Estuaries, 23(5), 647–661.

    Article  CAS  Google Scholar 

  • WHO. (2004). Guidelines for drinking water quality, recommendations (3rd ed.). Geneva: WHO.

    Google Scholar 

  • Yajima, H., & Choi, J. (2013). Changes in phytoplankton biomass due to diversion of an inflow into the Urayama Reservoir. Ecological Engineering, 8, 180–191. doi:10.1016/j.ecoleng.2013.06.030.

    Article  Google Scholar 

  • Yazdi, J., & Salehi Neyshabouri, S. A. A. (2014). Adaptive surrogate modeling for optimization of flood control detention dams. Environmental Modelling & Software, 61, 106–120.

    Article  Google Scholar 

  • Yu, S. J., Lee, J. Y., & Ha, S. R. (2010). Effect of a seasonal diffuse pollution migration on natural organic matter behavior in a stratified dam reservoir. Journal of Environmental Sciences, 22(6), 908–914. doi:10.1016/S1001-0742(09)60197-2.

    Article  CAS  Google Scholar 

  • Zhang, H., Culver, D. A., & Boegman, L. (2008). A two-dimensional ecological model of Lake Erie: application to estimate dreissenid impacts on large lake plankton populations. Ecological Modelling, 214(2–4), 219–241. doi:10.1016/j.ecolmodel.2008.02.005.

    Article  Google Scholar 

  • Zhang, M., Lin, Q. Q., Xiao, L. J., Wang, S., Qian, X., & Han, B. P. (2014). Effect of intensive epilimnetic withdrawal on the phytoplankton in a (sub)tropical deep reservoir. Journal of Limnology, 72(3), 430–439. doi:10.4081/jlimnol.2013.e35.

    Google Scholar 

  • Zhang, Z., Sun, B., Billy, E., & Johnsonc, B. E. (2015). Integration of a benthic sediment diagenesis module into the two dimensional hydrodynamic and water quality model—CE-QUAL-W2. Ecological Modelling, 297(10), 213–231. doi:10.1016/j.ecolmodel.2014.10.025.

    Article  CAS  Google Scholar 

  • Zouabi-Aloui, B., & Gueddari, M. (2009). Long-term water quality monitoring of the Sejnane reservoir in North East Tunisia. Bulletin of Engineering Geology and the Environment, 68(3), 307–316. doi:10.1007/s10064-009-0186-1.

    Article  CAS  Google Scholar 

  • Zouabi-Aloui, B., & Gueddari, M. (2013). A multivariate assessment of the trophic state of a man-made reservoir in North Tunisia. Limnological Review, 13(4), 229–240. doi:10.2478/limre-2013-0026.

    Google Scholar 

  • Zouabi-Aloui, B., & Gueddari, M. (2014). Two-dimensional modelling of hydrodynamics and water quality of a stratified dam reservoir in the southern side of the Mediterranean Sea. Environmental Earth Sciences, 1–15, doi:10.1007/s12665-014-3210-0.

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their helpful and constructive comments that greatly contributed to improving the final version of the paper. The authors would also like to express their deepest gratitude to Mr. Arfaoui Mustapha (General Direction of Dams and Large Hydraulic Works, Tunisia) and Dr. Faith Githui (Department of Environment and Primary Industries, Agriculture Research Division, Victoria, Australia) for their invaluable contributions to this work.

Compliance with ethical standards

We hereby declare that this work has no conflict of interest to disclose or any relevant financial relationship and is carried out in accordance with the relevant national and local guidelines. We warrant that our research institutions have fully approved that all experiments used were conducted in compliance with ethical and humane principles of research. We affirm that we are familiar with the rules of avoiding plagiarism and ghostwriting. In this manuscript, all the contributions of other individuals or institutions are clearly indicated. The theories presented, methods used, analysis and research, as well as the copyrights to the figures and photographs belong to the authors or are clearly credited in the text. We certify that this work has not been submitted or published in full or in part elsewhere in English or another language, nor is it under consideration elsewhere. All authors have contributed sufficiently to the work and therefore they share collective responsibility and accountability for the results. All coauthors and responsible authorities at the research institution where the work has been carried out are informed before the manuscript is submitted to the EMAS journal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Besma Zouabi-Aloui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zouabi-Aloui, B., Adelana, S.M. & Gueddari, M. Effects of selective withdrawal on hydrodynamics and water quality of a thermally stratified reservoir in the southern side of the Mediterranean Sea: a simulation approach. Environ Monit Assess 187, 292 (2015). https://doi.org/10.1007/s10661-015-4509-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4509-3

Keywords

Navigation