Skip to main content
Log in

Geotechnical assessment of road failure and slope monitoring along Nsukka-Adoru-Idah highway, Southeastern Nigeria

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The quality of highway pavement is greatly influenced by the subgrade materials, the general geology of the area, and the materials used for construction. Investigation into the 75-km Nsukka-Adoru-Idah highway revealed that the pavement was underlain by three lithological units—Imo, Nsukka, and Ajali formations. The geotechnical evaluation carried out in the study includes the particle size distribution, Atterberg limit, specific gravity, compaction tests, and California bearing ratio (CBR). The base course has clay/silt (7–14%), fine sand (1–4%), medium sand (6–13%), and coarse sand (65–86%), while the subgrade presented clay/silt (74–82%), fine sand (6–9%), medium sand (10–17%), and coarse sand (1–3%). The average specific gravity results for the studied base course and subgrades are 2.58 and 2.52. Liquid limit (LL) result ranges from 27 to 60%, while plastic limit (PL) ranges between 17 and 24%, and plasticity index (PI) ranges from 5 to 39%. The maximum dry density (MDD) result ranges from 1.70 to 2.10 mg/m3, while the optimum moisture content (OMC) for the samples ranges between 14.1 and 18.0%. The CBR result for soaked and unsoaked samples ranges from 37 to 74 and 48 to 83%, respectively. The low unsoaked CBR (<80%) and high Atterberg limits (LL > 30% and PI > 12%) failed the stipulated Nigerian standard, signifying the need for stabilization. A geotechnical model of a highway road cut generated a factor of safety of 1.45, indicating possibility of slope failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adejuwon, J. O., Balogun, E. E., & Adejuwon, S. A. (1990). On the annual and seasonal patterns of rainfall fluctuations in sub-Sahara West Africa. International Journal of Climatology, 10, 839–846.

    Article  Google Scholar 

  • Aghamelu, O. P., & Okogbue, C. O. (2011). Geotechnical assessment of road failures in the Abakiliki area Southeasten Nigeria. International Journal of Civil and Environmental Engineering, 11(2), 12–21.

    Google Scholar 

  • Aghamelu, O. P., Nnebo, P. N., & Ezeh, H. N. (2011). Geotechnical and environmental problems related to shales in the Abakaliki area, Southeastern Nigeria. African Journal of Environmental Science and Technology, 5(2), 80–88.

    CAS  Google Scholar 

  • Akpokodje, E. G. (1986). The stabilization of some soils zone with cement and lime. Q.J Engineering Geology, 20, 287–296.

    Google Scholar 

  • Anyadaike, R. N. C., & Phil-Eze, P. O. (1989). Runoff response to basin parameters in Southern Nigeria. Geografiska Annaler, 71A(1–2), 75–84.

    Article  Google Scholar 

  • Arora, K. R. (2008). Soil mechanics and foundation engineering (eighth ed.pp. 376–787). New Delhi: Standard Publishers Ltd.

    Google Scholar 

  • Ayalew, I., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1), 15–31.

    Article  Google Scholar 

  • Bell, F. G. (2007). Engineering geology (2nd ed.pp. 207–248). London: Elsevier.

    Google Scholar 

  • Brink, A. B. A., Partridge, T. C., & William, A. A. (1982). Soil survey for engineering: monographs on soil and resource survey. Oxford: Oxford Science Publication.

    Google Scholar 

  • British Standard Institute BSI (1975). Method of testing stabilized soil B.S 1924. pp. 67–71.

  • Brooks, A.E., Igwe, O., Una, C.O., Maduka, R.I., & Ajodo, R.O. (2014a). Rainfall induced rock-fall debris avalanche in October 2010, at Kwande Local Government Area of Benue State, Nigeria. India. Journal of the Geological Society of India.

  • Brooks, A.E., Igwe, O., Una, C.O., Maduka, R.I., & Ajodo, R.O. (2014b). Causes and possible movement of a rock-fall debris/ rock slide at Kwande Local Government Area during the rainy season; In: Proceedings of the discussion session of World Landslide Forum 3, Beijing, China.

  • Chandler, R. J. (1978). The application of soil mechanics methods to the study of slopes. In J. R. Hails (Ed.), Applied geomorphology: a perspective of the contribution of geomorphology to interdisciplinary studies and environmental management (pp. 157–181). Amsterdam: Elsevier.

    Google Scholar 

  • Coduto, D.P. (2007). Geotechnical engineering; principles and practices. Prentice Hall of India Private Limited pp 528–529.

  • Dent, D., & Young, A. (1981). Soil survey and land evaluation. London: George Allen & Unwin.

    Google Scholar 

  • Douglas, I. (1978). Tropical geomorphology: present problems and future prospects. In C. Embleton, D. Brunsden, & D. K. C. Jones (Eds.), Geomorphology: present problems and future prospects (pp. 162–184). Oxford: Oxford University Press.

    Google Scholar 

  • Emesiobi, F. C. (2002). Research testing and quality control of materials 1: civil and highway engineering. Port-Harcourt: The Blueprint Limited.

    Google Scholar 

  • Gbuyiro, S.O., & Orji, B.N.E. (2005). Monitoring of mid-summer drought in West Africa using Global Models. Proceeedings of AMMA workshop, Dakar, Senegal: AMMA Pub. pp. 810–612.

  • Gokceoglu, C., & Aksoy, H. (1996). Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques. Engineering Geology, 44(1), 147–161.

    Article  Google Scholar 

  • Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P. (1999). Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31, 181–216.

    Article  Google Scholar 

  • Igwe, O. (2015a). The geotechnical characteristics of landslides on the sedimentary and metamorphic terrains of south-east Nigeria, West Africa. Geoenvironmental Disasters. doi:10.1186/s40677-014-0008-z.

    Google Scholar 

  • Igwe, O. (2015b). Stability analysis and simulated hydrologic response of some vulnerable slopes in Nigeria: implications for rainfall-induced landslides. IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG)., 3(3), 48–56. doi:10.9790/0990-03314856.

    Google Scholar 

  • Igwe, O., Mode, W., Nnebedum, O., Okonkwo, I., Okwara, I., & Mbakwe, I. (2011). Imande-ukusuItulygh landslide. Geophysical Research Abstracts, 13, 2011–1226.

    Google Scholar 

  • Igwe, O., Mode, W., Nnebedum, O., Okonkwo, I., & Oha, I. (2013). The analysis of rainfallinduced slope failures at Iva Valley area of Enugu State. Nigeria. Environ Earth Sci DOI. doi:10.1007/s12665-013-2647-x.

    Google Scholar 

  • Ilesanmi, O. O. (1972). Aspects of the precipitation climatology of the July-August rainfall minimum of southern Nigeria. J. Trop.Geogr., 35, 51–59.

    Google Scholar 

  • Ilesanmi, O.O. (1981). Aspects of the precipitation climatology of the July-August raianfall minimum of southern Nigeria. In: proceeding NGA Regional Planning Committee Seminar on Uban and Regional Problems in Nigeria, University of Ile-Ife.

  • Ireland, D. H. (1962). The little dry season of southern Nigeria. Nigerian Geogr. J., 5(1), 7–21.

    Google Scholar 

  • Iverson, R. M. (2000). Landslide triggering by rain infiltration. Water Resources Research, 36(7), 1897–1910.

    Article  Google Scholar 

  • Lawler, P. (1995). A question of values: Johan Galtungs peace research London: Lynne Rienner.

  • Monanu, P., & Inyang, F. (1975). Climatic Regimes. In G. E. K. Ofomata (Ed.), Nigeria in maps (pp. 27–29). Benin: Ethiope Publ. House.

    Google Scholar 

  • Msilimba, G., & Holmes, P. (2010). Landslides in the rumphi district of northern Malawi: characteristics and mechanisms of generation. Natural Hazards, 54(3), 657–677.

    Article  Google Scholar 

  • Nfor, B.N. (2003). Sedimentary facies and the diagnostic characteristics for the Campanian-Eocene Anambra Basin; unpublished Ph.D. thesis submitted to the Department of Geological Sciences, Nnamdi Azikiwe University, Awka. pp.236.

  • Nigeria Federal Ministry of Works and Housing (1970). General specification for roads and bridge works. Lagos: Federal Government of Nigeria.

    Google Scholar 

  • Offordile, M. E. (2002). Ground water study and development in Nigeria. Nigeria: Mecon Geology and Engineering Services Jos.

    Google Scholar 

  • Ofoegbu, C. O., & Amajor, L. C. (1987). A geotechnical comparison of the pyroclastic rocks from Abakiliki and Ezillo, Southeastern Benue Trough. Journal of Mining and Geology, 23, 45–51.

    Google Scholar 

  • Ofomata, G.E.K.. (2002). Relief In: GEK Ofomata (Ed.) Survey of Igbo Nations, Africana First Publishers Limited.

  • Ofomata, G. E. K., & Umeuduji, J. E. (1994). Topographic constraints to urban land uses in Enugu, Nigeria: landscape and urban planning, Amsterdam. Elsevier Science, 28, 129–141.

    Google Scholar 

  • Okagbue, C. O., & Ochulor, O. H. (2007). The potential of cement stabilized coal reject as a construction material. Bulletin of Engineering Geology and Environment, 66, 143–151.

    Article  CAS  Google Scholar 

  • Okogbue, C. O., & Ezechi, C. (1988). Geotechnical characteristics of soil susceptible to severe gulling in eastern Nigeria. Paris: Bulletin of International Association of Engineering Geology.

    Google Scholar 

  • Okogbue, C.O., & Ifedigbo, J. (1995). Geotechnical properties of the road cuts of Enugu Onitsha highway. Bulletin of International Association of Engineering Geology.

  • Ollier, C. D. (1978). Applications of weathering studies. In J. R. Hails (Ed.), Applied geomorphology: a perspective of the contribution of geomorphology to interdisciplinary studies and environmental management (pp. 9–50). Amsterdam: Elsevier.

    Google Scholar 

  • Petrucci, O., & Polemio, M. (2009). The role of meteorological and climatic conditions in the occurrence of damaging hydro-geologic events in Southern Italy. Natural Hazards and Earth System Sciences, 9, 105–118.

    Article  Google Scholar 

  • Reidenouer, D. R. (1970). Shale suitability, phase ii: Pennsylvania Department of Transportation, Bureau of Materials, Testing and Research. Interim rep., 1, 198.

    Google Scholar 

  • Reyment, R. A. (1965). Aspects of the geology of Nigeria (p. 133). Ibadan: University of Ibadan Press.

    Google Scholar 

  • Sassa, K., Wang, G., Fukuoka, H., Wang, F. W., Ochiai, T., & Sugiyama, S. T. (2004). Landslide risk evaluation and hazard mapping for rapid and long-travel landslides in urban development areas. Landslides, 1(3), 221–235.

    Article  Google Scholar 

  • Singh, P. (2008). Engineering and general geology, (8th edn) (pp. 409–565). New Delhi: Kataria& Sons.

    Google Scholar 

  • Sowers, G. B., & Sowers, G. E. (1970). Introduction to soil mechanics and formations (p. 337). London: Macmillan Book Publishing.

    Google Scholar 

  • Vestappen, H. T. H. (1983). Applied geomorphology: geomorphological surveys for environmental development. Amsterdam: Elsevier.

    Google Scholar 

  • Wang, F. W., Sassa, K., & Wang, G. (2002). Mechanism of a long-runout landslide triggered by the august 1998 heavy rainfall in Fukushima prefecture. Japan. Eng. Geol., 63(1–2), 169–185.

    Article  Google Scholar 

  • Wolman, M., & Schick, A. P. (1967). Effects of construction on fluvial sediment in urban and suburban areas of Maryland. Water Resources Research, 3, 451–464.

    Article  Google Scholar 

  • Yoder, E. J. (1959). Principles of pavement design. New York: John Wiley and Sons Inc..

    Google Scholar 

  • Youssef, A. M., Pradhan, B., Jebur, M. N., & El-Harbi, H. M. (2014). Landslide susceptibility mapping using ensemble bivariate and multivariate statistical models in Fayfa area, Saudi Arabia. Environment and Earth Science. doi:10.1007/s12665-014-3661-3.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge Engineer Nwachukwu Timothy of Setraco Construction Nigeria Limited and Engineer Ojoh Johnson of the National Steel Raw Materials Exploration Agency, Kaduna, Nigeria, for their efforts in the laboratory. The authors also appreciate all lecturers in the Department of Geology, University of Nigeria, Nsukka, for their valuable contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Iweanya Maduka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maduka, R.I., Igwe, O., Ayogu, N.O. et al. Geotechnical assessment of road failure and slope monitoring along Nsukka-Adoru-Idah highway, Southeastern Nigeria. Environ Monit Assess 189, 30 (2017). https://doi.org/10.1007/s10661-016-5699-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5699-z

Keywords

Navigation