Skip to main content
Log in

Impact of organic contaminants from dumpsite leachates on natural water sources in the Enugu Metropolis, southeastern Nigeria

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

A Correction to this article was published on 26 December 2019

This article has been updated

Abstract

This study evaluates the impact of leachates from a municipal dumpsite on the quality of domestic water sources in the area for potable use. Concentrations of leachate-associated organic contaminants (such as diethyl–phthalate, total organic halogen (TOH); 2,4-dichlorophenol; nonylphenol–ethoxylate; methyl–ethyl–phthalate; borneol; total organic carbon (TOC); total Kjeldahl-nitrogen (TKN); ammonium–nitrogen (NH3–N); nitrate (NO3); nitrate–nitrogen (NO3–N); and total phosphorus (TP)) in rivers and groundwater in the Enugu Metropolis in southeastern Nigeria were assessed in this study. Results of laboratory analyses indicate that the average values of diethyl–phthalate, borneol, TOH, nonylphenol–ethoxylate and TOC are 0.08 mg/l, 0.04 mg/l, 1.05 mg/l, 0.2 mg/l and 1.64 mg/l, respectively for groundwater and 0.1 mg/l, 0.03 mg/l, 0.74 mg/l, 0.19 mg/l and 1.74 mg/l, respectively, for rivers. Three (diethyl–phthalate, borneol and TOH) out of these major five contaminants, in both rivers and groundwater, exceeded the maximum permissible limits, suggesting that the domestic water sources are marginally contaminated by the leachates. ANOVA test result suggests that the data sources were significantly variable, while principal component and correlation analyses identified TOH, 2,4-dichlorophenol, TKN, NO3, NO3–N, TP and borneol, which originated most probably from degradation of plastic materials and organic wastes in the dumpsite, as the priority contaminants. Consumption of domestic water sources within the dumpsite area, in untreated state, could lead to health risks as these priority organic contaminants are mostly carcinogenic, toxic and injurious to human systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

  • 26 December 2019

    Unfortunately, the name of the first author was incorrectly captured in the published online paper.

References

  • Aba, S. O., & Ohimain, E. I. (2010). Assessment of dumpsite rehabilitation potentials using the integrated risk based approach: a case study of Eneka, Nigeria. World Applied Sciences Journal, 8(4), 436–442.

    Google Scholar 

  • Abd El-Salam, M. M., & Abu-Zuid, G. I. (2015). Impact of landfill leachate on the groundwater quality: a case study in Egypt. Journal of Advanced Research, 6(4), 579–586. https://doi.org/10.1016/j.jare.2014.02.003.

    Article  CAS  Google Scholar 

  • Adar, E., & Bilgili, M. S. (2015). The performance of four different mineral liners on the transportation of chlorinated phenolic compounds to groundwater in landfills. Scientific World Journal, 2014(171284), 1–10.

  • Ajah, K. C., Joel, A., & Chidozie, C. N. (2015). Spatiality, seasonality and ecological risks of heavy metals in the vicinity of a degenerate municipal central dumpsite in Enugu, Nigeria. Journal of Environmental Health Science & Engineering, 14, 1–14.

    Google Scholar 

  • Aka, E. U. (1983) Groundwater investigations in the Enugu area using electrical resistivity methods. Unpublished M.Sc. Thesis, University of Nigeria, Nsukka.

  • Aladejana, J. A., Odeyemi, O. O., Tijani, M. N., & Hassan, I. (2018). Integrated assessment of leachate concentration in soil underlying amuloko open waste dumpsite, Ibadan Southwestern, Nigeria. Journal of Mining and Geology, 54(1), 1–11.

    Google Scholar 

  • Alam, A., Tabinda, A. B., Qadir, A., Butt, T. E., Siddique, S., & Mahmood, A. (2017). Ecological risk assessment of an open dumping site at Mehmood Booti Lahore, Pakistan. Environmental Science and Pollution Research International, 24(21), 17889–17899. https://doi.org/10.1007/s11356-017-9215-y.

    Article  CAS  Google Scholar 

  • American Public Health Association (APHA). (2012). Standards methods for the examination of water and wastewater (22nd ed.p. 1360). New York: American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF).

    Google Scholar 

  • Ananaba, S. E. (1991). Geophysical study of gravel deposit in Ihiagwa, Owerri. Journal of Mining and Geology, 29, 195–200.

    Google Scholar 

  • Awomeso, J. A., Taiwo, A. M., Gbadebo, A. M., & Arimoro, A. O. (2010). Waste disposal and pollution management in urban areas: a workable remedy for the environment in developing countries. American Journal of Environmental Sciences, 6, 26–32.

    Article  CAS  Google Scholar 

  • Aziz, S. Q., Aziz, H. A., Yusoff, M. S., Bashir, M. J. K., & Umar, M. (2010). Leachate characterization in semi-aerobic and anaerobic sanitary landfills: a comparative study. Journal of Environmental Management, 91, 2608–2614.

    Article  CAS  Google Scholar 

  • Bejgarn, S., MacLead, M., Bogdal, C., & Breitholtz, M. (2015). Toxicity of leachate from weathering plastics: An exploratory screening study with Nitocra spinipes. Chemosphere, 132, 114–119. https://doi.org/10.1016/j.chemosphere.2015.03.010.

    Article  CAS  Google Scholar 

  • Bowman, G., & Delfino, J. (1982). Determination of total Kjeldahl nitrogen and total phosphorus in surface waters and wastewaters. Journal of Water Pollution Control Federation, 54(9), 1324-1330. https://www.jstor.org/stable125041688.

  • Chabuk, A., Al-Ansari, N., Hussain, H. M., Laue, J., Hazim, A., Knutsson, S., & Pusch, R. (2019). Landfill sites selection using MCDM and comparing method of change detection for Babylon Governorate, Iraq. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-019-05064-7.

  • Coker, A. O., Achi, C. G., Sridhar, M. K. C., & Donnett, C. J. (2016). Solid waste management practices at a private institution of higher learning in Nigeria. Procedia Environmental Sciences, 35, 28–39. https://doi.org/10.1016/j.proenv.2016.07.003.

    Article  Google Scholar 

  • Cumar, S. K., & Nagaraja, B. (2011). Environmental impact of leachate characterics on water quality. Environmental Monitoring and Asssessment, 178(1-4), 499–505. https://doi.org/10.1007/s10661-010-1708-9.

    Article  CAS  Google Scholar 

  • Egboka, B. C. E. (1993). Water resources problem in the Enugu area of Enugu State. Nigerian Journal of Mining Geology, 20, 1–6.

    Google Scholar 

  • Engelmann, P. D., dos Santos, V. H. J. M., Barbieri, C. B., Augustin, A. H., Ketzer, J. M. M., & Rodrigues, L. F. (2018). Environmental monitoring of landfill area through the application of carbon stable isotopes, chemical parameters and multivariate analysis. Waste Management, 76, 591–605.

  • Fatta, D., Papadopoulos, A., & Loizidou, M. (1999). A study on the landfill leachate and its impact on the groundwater quality of the greater area. Environmental Geochemistry and Health, 21, 175–190.

    Article  CAS  Google Scholar 

  • Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E., & Purnell, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials, 344, 179–199. https://doi.org/10.1016/j.jhazmat.2017.10.014.

    Article  CAS  Google Scholar 

  • Inyang, P. E. B. (1974). Climatic regions. In G. E. K. Ofomata (Ed.), Nigeria in maps; Eastern States (pp. 27–29). Benin: Ethiopian Publishing House.

    Google Scholar 

  • Jenn, F., Kofahl, C., Muller, M., Radschniski, J., & Voigt, H. J. (2007). Interpretation of geological, hydrogeological, and geochemical results. In K. Knodel, G. Lange, & H. J. Voigt (Eds.), Environmental geology: Handbook of field methods and case studies (p. 818). Berlin: Springer.

    Google Scholar 

  • Kawagoshi, Y., Nakamura, S., & Fukunaga, I. (2002). Degradation of organophosphoric esters in leachate from a sea-based solid waste disposal site. Chemosphere, 48, 219–225.

    Article  CAS  Google Scholar 

  • Kawai, M., Purwanti, I. F., Nagao, N., Slamet, A., Hermana, J., & Toda, T. (2012). Seasonal variation in chemical properties and degradability by anaerobic digestion of landfill leachate at Benowo in Surabaya, Indonesia. Journal of Environmental Management, 110, 267–275. https://doi.org/10.1016/j.jenvman.2012.06.022.

    Article  CAS  Google Scholar 

  • Maiti, S. K., De, S., Hazra, T., Debsarkar, A., & Dutta, A. (2016). Characterization of leachate and its impact on surface and groundwater quality of a closed dumpsite - a case study at Dhapa, Kolkata, India. Procedia Environmental Sciences, 35, 391–399. https://doi.org/10.1016/j.proenv.2016.07.019.

    Article  CAS  Google Scholar 

  • Majolagbe, A. O., Adeyi, A. A., & Osibanjo, O. (2016). Vulnerability assessment of groundwater pollution in the vicinity of an active dumpsite (olusosun), Lagos, Nigeria. Chemistry International, 2(4), 232–241.

  • Mbah, P. O., & Nzeadibe, T. C. (2017). Inclusive municipal solid waste management policy in Nigeria: engaging the informal economy in post-2015 development Agenda. Local Environment, 22(2), 203–224. https://doi.org/10.1080/13549839.2016.1188062.

    Article  Google Scholar 

  • Mor, S., Ravindra, K., Dahiya, R. P., & Chandra, A. (2006). Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site. Environmental Monitoring and Assessment, 118, 435–456. https://doi.org/10.1007/s10661-006-1505-7.

    Article  CAS  Google Scholar 

  • Nabegu, A. B. (2010). An analysis of municipal solid waste in Kano Metropolis, Nigeria. Journal of Human Ecology, 31(2), 111–119. https://doi.org/10.1080/09709274.2010.11906301.

    Article  Google Scholar 

  • Neal, C., Jarvie, H. P., Withers, P. J. A., Whitton, B. A., & Neal, M. (2010). The strategic significance of wastewater sources to pollutant phosphorus levels in English rivers and to environmental management for rural, agricultural and urban catchments. Science of the Total Environment, 408(7), 1485–1500. https://doi.org/10.1016/j.scitotenv.2009.12.020.

    Article  CAS  Google Scholar 

  • Oakley, S. M., & Jimenez, R. (2012). Sustainable sanitary landfills for neglected small cities in developing countries: the semi-mechanized trench method from Villanueva, Honduras. Waste Management, 32(12), 2535–2551. https://doi.org/10.1016/j.wasman.2012.07.030.

    Article  Google Scholar 

  • Obasi, I. A., Nnachi, E. E., Igwe, O. E., & Obasi, P. N. (2015). Evaluation of pollution status of heavy metals in the groundwater system around open dumpsites in Abakaliki urban, southeastern Nigeria. African Journal of Environmental Science and Technology, 9(7), 600–609.

    Article  Google Scholar 

  • Olabaniyi, S. B., & Owoyemi, F. B. (2006). Characterization by factor analysis of the chemical facies of groundwater in the deltaic plain sands aquifer of Warri, western Niger Delta, Nigeria. African Journal of Science and Technology, 7, 73–81.

  • Omaka, N. O., Aghamelu, O. P., Ike-Amadi, C. A., & Ofoezie, R. C. (2017). Assessment of the quality of groundwater from different parts of southeastern Nigeria for potable use. Environmental Earth Sciences, 76(9), 344 (1-24). https://doi.org/10.1007/s12665-017-6680-z.

    Article  CAS  Google Scholar 

  • Oman, C., & Hynning, P. (1993). Identification of organic compounds in the municipal landfill leachates. Environmental Polllution, 80, 265–271.

    Article  CAS  Google Scholar 

  • Onyekuru, S. O., Nwankwor, G. I., & Akaolisa, C. Z. (2010). Chemical characteristics of groundwater systems in the southern Anambra Basin, Nigeria. Journal of Applied Sciences Research, 6, 2164–2172.

    CAS  Google Scholar 

  • Onyekwelu, I. L. (2016). Assessment of contaminants in natural waters by leachates from Ugwuaji dumpsite. Unpublished M.Sc. Thesis, Enugu State University of Science and Technology, Agbani.

  • Preziosi, E., Frollini, E., Zoppini, A., Ghergo, S., Melita, M., Parrone, D., Rossi, D., & Amalfitano, S. (2019). Disentangling natural and anthropogenic impacts on groundwater by hydrogeochemical, isotopic and microbiological data: Hints from a municipal solid waste landfill. Waste Management, 84, 245–255. https://doi.org/10.1016/j.wasman.2018.12.005.

    Article  CAS  Google Scholar 

  • Reinhard, M., Goodman, N. L., & Barker, J. F. (1984). Occurrence and distribution of organic chemicals in two landfill leachate plumes. Environmental Science and Technology, 18, 953–961.

    Article  CAS  Google Scholar 

  • Reyment, R. A. (1965). Aspects of the geology of Nigeria: The stratigraphy of the Cretaceous and Cenozoic deposits (pp. 145). Ibadan: Ibadan University Press.

    Google Scholar 

  • Robinson, H. D., & Gronow, J. R. (1993). A review of landfill leachate composition in the UK. In T. H. Christensen, R. Cossu, & R. Stegmann (Eds.), Proceedings of the 4 th International Waste Management and Landfill Symposium, Sardinia (pp. 821–831). Padova: CISA Publisher.

    Google Scholar 

  • Sajjadi, S. A., Aliakbari, Z., Matlabi, M., Biglari, H., & Rasouli, S. S. (2017). Environmental impact assessment of Gonabad municipal waste landfill site using Leopold Matrix. Electron Physician, 9(2), 3714–3719.

    Article  Google Scholar 

  • Sánchez-Arias, M., Riojas-Rodríguez, H., Catalán-Vázquez, M., Terrazas-Meraz, M. A., Rosas, I., Espinosa-García, A. C., Santos-Luna, R., & Siebe, C. (2019). Socio-environmental assessment of a landfill using a mixed study design: a case study from México. Waste Management, 85, 42–59.

    Article  Google Scholar 

  • Sasaki, S., Araki, T., Tambunan, A. H., & Prasadja, H. (2014). Household income, living and working conditions of dumpsite waste pickers in Bantar Gebang: toward integrated waste management in Indonesia. Resources, Conservation and Recycling, 89, 11–21. https://doi.org/10.1016/j.resconrec.2014.05.006.

    Article  Google Scholar 

  • Schwarzbauer, J., Heim, S., Brinker, S., & Little, R. (2002). Occurrence and alteration of organic contaminants in seepage and leakage water from a waste deposit landfill. Water Resources, 36, 2275–2287.

    CAS  Google Scholar 

  • Slack, R. J., Gronow, J. R., & Voulvoulis, N. (2005). Household hazardous waste in municipal landfills: Contaminants in leachates. Science of the Total Environment, 337(1-3), 119–137. https://doi.org/10.1016/j.scitotenv.2004.07.002.

  • Sormunen, K., Ettala, M., & Rintala, J. (2008). Internal leachate quality in a municipal solid waste landfill: vertical, horizontal and temporal variation and impacts of leachate recirculation. Journal of Hazardous Materials, 160(2–3), 601–607. https://doi.org/10.1016/j.jhazmat.2008.03.081.

    Article  CAS  Google Scholar 

  • Stamps, B. W., Lyles, C. N., Suflita, J. M., Masoner, J. R., Cozzarelli, I. M., Kolpin, D. W., & Stevenson, B. S. (2016). Municipal solid waste landfills harbor distinct microbiomes. Front Microbiology, 7, 534. https://doi.org/10.3389/fmicb.2016.00534.

    Article  Google Scholar 

  • Tse, H., Comba, M., & Alaee, M. (2004). Method for the determination of total phosphorus insecticides in water, sediments and biota. Chemosphere, 54(1), 41–47. https://doi.org/10.1016/S0045-6535(03)00659-3.

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (USEPA). (1984). A groundwater protection strategy for the environmental protection agency. Washington D.C: Office of Water, the United States Environmental Protection Agency.

    Google Scholar 

  • World Health Organization (WHO). (2011). Guidelines for drinking water quality (4th ed.p. 541). Geneva: The World Health Organization.

    Google Scholar 

  • Xu, Y., Xue, X., Dong, L., Nai, C., Liu, Y., & Huang, Q. (2018). Long-term dynamics of leachate production, leakage from hazardous waste landfill sites and the impact on groundwater quality and human health. Waste Management, 82, 156–166.

    Article  CAS  Google Scholar 

  • Yang, H., Yue, B., Liu, Y., Wu, X., Gao, H., Zhang, Z., & Yan, Z. (2019). Rural solid waste-characteristics and leachate pollution assessment for different precipitation levels. China. Environmental Science and Pollution Research International, 26(11), 11234–11244.

    Article  CAS  Google Scholar 

  • Yasuhara, A., Shiraishi, H., Nishikawa, M., Yamamoto, T., Uehiro, T., & Nakasugi, O. (1997). Determination of organic components in leachates from hazardous waste disposal sites in Japan by gas chromatography–mass spectrometry. Journal of Chromatography A, 2, 39–321.

    Google Scholar 

  • Zuffianò, L. E., Limoni, P. P., De Giorgio, G., & Polemio, M. (2018). Data to clarify the landfill role in the case of groundwater quality degradation (Southern Italy). Data in Brief, 20, 1489–1499. https://doi.org/10.1016/j.dib.2018.08.201.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. Daniel Ozoko, of the Department of Geology and Mining, Enugu State University of Science and Technology, Agbani, for his invaluable suggestions and contributions that assisted in completing the work. Dr. Ramson Enotoriuwa of Shell Petroleum Development Company of Nigeria (SPDC), Port Harcourt, is warmly appreciated for helping out in the statistical analysis. The management and staff of Simuch Analytical Laboratory, Nsukka, are also acknowledged for their assistance during the laboratory analysis. Dr. Ogechi Ekwenye of the Department of Geology, University of Nigeria, Nsukka, proofread the revised manuscript. She is dutifully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Okechukwu Pius Aghamelu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onyekwelu, I.L., Aghamelu, O.P. Impact of organic contaminants from dumpsite leachates on natural water sources in the Enugu Metropolis, southeastern Nigeria. Environ Monit Assess 191, 543 (2019). https://doi.org/10.1007/s10661-019-7719-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7719-2

Keywords

Navigation