Skip to main content

Advertisement

Log in

On the use of remote sensing to map the proliferation of aquaculture ponds and to investigate their effect on local climate, perspectives from the Claise watershed, France

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Ponds, as landscape features, are known to regulate climate. Since ponds proliferate or recede due to natural or anthropogenic factors, a variation of pond numbers implies a variation of their climatic effect. Accordingly, this study investigates the impact of ponds on the local climate of the French Claise watershed. The latter was chosen because it contains a pond dense zone and a pondless zone. This repartition makes the Claise an adequate context to reveal the climatic impact of ponds even in the same landscape. To study the pond-climate effect, the parallel evolution of pond numbers variation and subsequent climatic impact must be tracked. Therefore, the remote sensing-derived Normalized Difference Water Index (NDWI) was extracted from LANDSAT images with different acquisition dates to track changes in pond numbers with time. When compared with a pond map established from aerial photography interpretation, the LANDSAT NDWI map revealed an accuracy of 85.74% for pond count and 75% for pond spatial allocation. This validation showed that NDWI is suitable for mapping the proliferation of ponds through time. In order to study the parallel evolution of the climatic effect, the land surface temperature (LST) index was extracted for each LANDSAT map. LST maps revealed that as a result of pond number variation, surface temperatures varied accordingly. A comparison of air temperatures between the ponded zone and pondless zones also revealed that pond zones had lower air temperatures than their direct surroundings. Accordingly, ponds were shown to buffer local microclimates even within the same landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Avdan, U., & Jovanovska, G. (2016). Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. Journal of Sensors, 1–8.

  • Benarrous, R. (2009). La Grande Brenne aux périodes préindustrielles ( Indre ) Contribution à l ’ histoire des paysages , des étangs et des relations sociétés / milieux dans une zone humide continentale . Approches historique , archéologique et paléo-environnementale. Université de Paris I - Panthéon Sorbonne.

  • Berg, M. D., Popescu, S. C., Wilcox, B. P., Angerer, J. P., Rhodes, E. C., Mcalister, J., & Fox, W. E. (2016). Small farm ponds : Overlooked features with important impacts on watershed sediment transport. Journal of the American Water Resources Association, 52(1), 67–76. https://doi.org/10.1111/1752-1688.12369.

    Google Scholar 

  • Biggs, J., Williams, P., Whitfield, P., Nicolet, P., & Weatherby, A. (2005). 15 years of pond assessment in Britain: Results and lessons learned from the work of pond conservation. Aquatic Conservation: Marine and Freshwater Ecosystems, 15, 693–714.

    Google Scholar 

  • Bouscasse, H., Defrance, P., Amand, B., Grandmougi, B., Strosser, P., & Beley, Y. (2011). Amélioration des connaissances sur les fonctions et usages des zones humides : évaluation économique sur des sites tests le cas des étangs de la Grande Brenne.

  • Brown, L., & Young, K. L. (2006). Assessment of three mapping techniques to delineate lakes and ponds in a Canadian High Arctic Wetland Complex. Arctic, 59(3), 283–293.

    Google Scholar 

  • Carluer, N., Babut, M., Belliard, J., Bernez, I., Burger-Leenhardt, D., Dorioz, J. M., … Leblanc, B. (2016). Expertise scientifique collective sur l’impact cumulé des retenues. Rapport de synthèse. France.

  • Céréghino, R., Boix, D., Cauchie, H. M., Martens, K., & Oertli, B. (2014). The ecological role of ponds in a changing world. Hydrobiologia, 723(1), 1–6. https://doi.org/10.1007/s10750-013-1719-y.

    Google Scholar 

  • Dash, P., Göttsche, F. M., Olesen, F. S., & Fischer, H. (2002). Land surface temperature and emissivity estimation from passive sensor data: Theory and practice-current trends. International Journal of Remote Sensing, 23, 2563–2594.

    Google Scholar 

  • Dauphin, P., Mansons, J., Pellé, B., Airault, V., Trotignon, J., Boyer, P., … Issa, N. (2012). Document d’objectifs des sites Natura 2000 FR2410003 “Brenne” et FR2400534 “Grande Brenne.”

  • Downing, J. A. (2010). Emerging global role of small lakes and ponds : Little things mean a lot. Limnetica, 29(1), 9–24.

    Google Scholar 

  • Downing, J. A., Prairie, Y. T., Cole, J. J., Duarte, C. M., Tranvik, L. J., Striegl, R. G., et al. (2006). The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography, 51(5), 2388–2397.

    Google Scholar 

  • Du, Y., Zhang, Y., Ling, F., Wang, Q., Li, W., & Li, X. (2016). Water bodies’ mapping from Sentinel-2 imagery with Modified Normalized Difference Water Index at 10-m spatial resolution produced by sharpening the swir band. Remote Sensing, 8(354), 1–19. https://doi.org/10.3390/rs8040354.

    CAS  Google Scholar 

  • Durand, Y., Brun, E., Mérindol, L., Guyomarc’h, G., Lesaffre, B., & Martin, E. (1993). A meteorological estimation of relevant parameters for snow models. Annals of Glaciology, 18, 65–71.

    Google Scholar 

  • Ebel, J. D., & Lowe, W. H. (2013). Constructed ponds and small stream habitats: Hypothesized interactions and methods to minimize impacts. Journal of Water Resource and Protection, 05(07), 723–731. https://doi.org/10.4236/jwarp.2013.57073.

    Google Scholar 

  • Fischer, G., Nachtergaele, F., Prieler, S., Van Velthuizen, H. T., Verelst, L., & Wiberg, D. (2008). Global agro-ecological zones assessment for agriculture (GAEZ 2008). Rome.

  • Gao, B. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266.

    Google Scholar 

  • Guichané, R. (1993). L ‘aménagement hydraulique de la Claise tourangelle et de ses affluents du Moyen-Âge à nos jours / Mills on the claise and its tributaries in Indre-et-Loire from the Middle Ages to modern times. Revue Archéologique Du Centre de La France, 32, 109–152.

    Google Scholar 

  • Hassall, C. (2014). The ecology and biodiversity of urban ponds. Wiley Interdisciplinary Reviews Water, 1(2), 187–206.

    Google Scholar 

  • Huang, C., Chen, Y., Wu, J., Li, L., & Liu, R. (2015). An evaluation of Suomi NPP-VIIRS data for surface water detection. Remote Sensing Letters, 6(2), 155–164. https://doi.org/10.1080/2150704X.2015.1017664.

    Google Scholar 

  • Huang, C., Chen, Y., Zhang, S., & Wu, J. (2018). Detecting, extracting, and monitoring surface water from space using optical sensors: A review. Reviews of Geophysics, 56, 333–360. https://doi.org/10.1029/2018RG000598.

    Google Scholar 

  • Jakovljević, G., Govedarica, M., & Álvarez-Taboada, F. (2019). Waterbody mapping: A comparison of remotely sensed and GIS open data sources. International Journal of Remote Sensing, 1–29. https://doi.org/10.1080/01431161.2018.1538584.

    Google Scholar 

  • Joly, D., Brossard, T., Cardot, H., Cavailhes, J., Hilal, M., & Wavresky, P. (2010). Les types de climats en France, une construction spatiale - Types of climates on continental France, a spatial construction. Cybergéo : European Journal of Geography, 501, 1–23. Retrieved from http://prodinra.inra.fr/ft?id=%7BDDCC3C34-7355-486A-A7D2-E2509D33DC4F%7D%5Cn. http://cybergeo.revues.org/index23155.html. Accessed 10/10/2019.

  • Kumar, M., & Padhy, P. (2015). Environmental perspectives of pond ecosystems: Global issues, services and Indian scenarios. Current World Environment: An International Research Journal of Environmental Sciences, 10(3), 848–867. https://doi.org/10.12944/cwe.10.3.16.

    Google Scholar 

  • Lima, T. A., Beuchle, R., Langner, A., Grecchi, R. C., Griess, V. C., & Achard, F. (2019). Comparing Sentinel-2 MSI and Landsat 8 OLI imagery for monitoring selective logging in the Brazilian Amazon. Remote Sensing, 11(961), 1–21. https://doi.org/10.3390/rs11080922.

    Google Scholar 

  • Martin, M. A., Ghent, D., Pires, A. C., Göttsche, F. M., Cermak, J., & Remedios, J. J. (2019). Comprehensive in situ validation of five satellite land surface temperature data sets over multiple stations and years. Remote Sensing, 11(5), 1–31. https://doi.org/10.3390/rs11050479.

    Google Scholar 

  • Mathé, S., & Rey-Valette, H. (2015). Local knowledge of pond fish-farming ecosystem services: Management implications of stakeholders’ perceptions in three different contexts (Brazil, France and Indonesia). Sustainability (Switzerland), 7, 7644–7666. https://doi.org/10.3390/su7067644.

    Google Scholar 

  • McFeeters, S. K. (1996). The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17, 1425–1432.

    Google Scholar 

  • McFeeters, S. K. (2013). Using the Normalized Difference Water Index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: A practical approach. Remote Sensing, 5, 3544–3561.

    Google Scholar 

  • Miracle, M. R., Oertli, B., Céréghino, R., & Hull, A. (2010). Preface: Conservation of European ponds-current knowledge and future needs. Limnetica, 29(1), 1–8.

    Google Scholar 

  • Mishra, K., & Prasad, P. R. C. (2015). Automatic extraction of water bodies from Landsat imagery using perceptron model. Journal of Computational Environmental Sciences, 201, 1–9. https://doi.org/10.1155/2015/903465.

    Google Scholar 

  • Mueller, N., Lewis, A., Roberts, D., Ring, S., Melrose, R., Sixsmith, J., et al. (2016). Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia. Remote Sensing of Environment, 174, 341–352. https://doi.org/10.1016/j.rse.2015.11.003.

    Google Scholar 

  • Mujere, N., & Eslamian, S. (2014). Climate change impacts on hydrology and water resources. In S. Eslamian (Ed.), Handbook of engineering hydrology modeling, climate change and variability 2 (pp. 114–125). CRC-Press.

  • Oertli, B., Joyer, D. A., Catella, E., Juge, R., Cambin, D., & Lachavanne, J. B. (2002). Does size matter? The relationship between pond area and biodiversity. Biological Conservation, 104, 59–70.

    Google Scholar 

  • Ottinger, M., Clauss, K., & Kuenzer, C. (2017). Large-scale assessment of coastal aquaculture ponds with Sentinel-1 time series data. Remote Sensing, 9(440), 1–23.

    Google Scholar 

  • Pearson, K. (1985). Notes on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London, 58, 240–242.

    Google Scholar 

  • Rosset, V., & Oertli, B. (2011). Freshwater biodiversity under climate warming pressure: Identifying the winners and losers in temperate standing waterbodies. Biological Conservation, 144, 2311–2319.

    Google Scholar 

  • Ryu, J. H., Won, J. S., & Min, K. D. (2002). Waterline extraction from Landsat TM data in a tidal flat a case study in Gomso Bay, Korea. Remote Sensing of Environment, 83, 442–456. https://doi.org/10.1016/S0034-4257(02)00059-7.

    Google Scholar 

  • SANDRE (2012). Fiche cours d’eau la Claise (L6--0200).

  • Sathya, P., & Baby Deepa, V. (2017). Analysis of supervised image classification method for satellite images. International Journal of Computer Science Research, 5(2), 16–19.

    Google Scholar 

  • Shakir, A., Mishra, P. K., Islam, A., & Alam, N. M. (2015). Simulation of water temperature in a small pond using parametric statistical models: Implications of climate warming. Journal of Environmental Engineering, 142(3), 1–14.

    Google Scholar 

  • Tulbure, M. G., & Broich, M. (2013). Spatiotemporal dynamic of surface water bodies using Landsat time-series data from 1999 to 2011. ISPRS Journal of Photogrammetry and Remote Sensing, 79(May), 44–52. https://doi.org/10.1016/j.isprsjprs.2013.01.010.

    Google Scholar 

  • Tulbure, M. G., Broich, M., Stehman, S. V., & Kommareddy, A. (2016). Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sensing of Environment, 178, 142–157. https://doi.org/10.1016/j.rse.2016.02.034.

    Google Scholar 

  • USGS (2012). Earth explorer. Sioux Falls.

  • Verpoorter, C., Kutser, T., Seekell, D. A., & Tranvik, L. J. (2014). A global inventory of lakes based on high-resolution satellite imagery. Geophysical Research Letters, 41(18), 6392–6402. https://doi.org/10.1002/2014GL060641.

    Google Scholar 

  • Verstraeten, G., & Poesen, J. (2002). Using sediment deposits in small ponds to quantify yield from small catchments : Possibilities and limitations. Earth Surface Processes and Landforms, 27, 1425–1439. https://doi.org/10.1002/esp.439.

    Google Scholar 

  • Xu, H. (2006). Modification of Normalized Difference Water Index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033.

    Google Scholar 

  • Yan, D., Wang, X., Zhu, X., Huang, C., & Li, W. (2017). Analysis of the use of NDWIgreen and NDWIred for inland water mapping in the Yellow River Basin using Landsat-8 OLI imagery. Remote Sensing Letters, 8(10), 996–1005.

    Google Scholar 

  • Yang, X., Qin, Q., Grussenmeyer, P., & Koehl, M. (2018). Urban surface water body detection with suppressed built-up noise based on water indices from Sentinel-2 MSI imagery. Remote Sensing of Environment, 219, 259–270. https://doi.org/10.1016/j.rse.2018.09.016.

    Google Scholar 

  • Yu, X., Guo, X., & Wu, Z. (2014). Land surface temperature retrieval from Landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sensing, 6, 9829–9852.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Brenne Natural Regional Park for maintenance of weather station data.

Funding

This research is part of a PhD thesis funded by the National Council for Scientific Research-Lebanon (CNRS-L), Agence Universitaire de la Francophonie (AUF), Beirut, Lebanon and the Lebanese University. It is also part of the Dynétangs project funded by the French Centre-Val-de-Loire region. Authors thank the mentioned parties for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chadi Abdallah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Sayah, M.J., Nedjai, R., Abdallah, C. et al. On the use of remote sensing to map the proliferation of aquaculture ponds and to investigate their effect on local climate, perspectives from the Claise watershed, France. Environ Monit Assess 192, 301 (2020). https://doi.org/10.1007/s10661-020-08250-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08250-0

Keywords

Navigation