Skip to main content
Log in

Electrostratigraphy and hydrogeochemistry of hyporheic zone and water-bearing caches in the littoral shorefront of Akwa Ibom State University, Southern Nigeria

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Ground-based electrical geophysical data calibrated with borehole information are conveniently used to delineate subsurface strata because of their inherent capability to assess the lateral and vertical variations in the pore water. In this study, joined geophysical approach of vertical electrical sounding (VES) and electrical resistivity tomography (ERT) has been steered to define the strata in the hyporheic zone and in the water bearing caches in the Akwa Ibom State University’s littoral shorefront. Four ERTs with each using Wenner array with 5 m electrode spacing were conducted along four profiles at the same locations that VES were conducted. Twelve surface VES soundings were performed with maximum current electrode separations of (AB/2 = 150 m). The integration of formation resistivity with six boreholes reveals motley topsoil/dry strata with resistivity value greater than 200 Ω - m above water table; saturated clay/saline water depository with resistivity value less than 30 Ω - m below water table; fine-grained sand/brackish water depository with resistivity range spanning between 70 and 200 Ω - m below water table; medium-grained sand/freshwater depository with resistivity ranging from 500 to 800 Ω - m below water table and gravelly sand/freshwater depository with resistivity value greater 800 Ω - m below water table were inferred from top to bottom within the maximum current electrode separations. These ranges of resistivity show lithological diversity in subsurface layer. Geochemical analysis was performed for main cations (magnesium, sodium, potassium, calcium, iron and manganese), anions (bicarbonates, sulphates, chloride, and fluoride) and other physical parameters such as, pH, electrical conductivity, total dissolved solids, dissolved oxygen, biochemical oxygen demand and chemical oxygen demand. The results of the interpretation of hydrochemical species of the groundwater samples revealed that the groundwater in most locations within the study area is fresh, slightly alkaline to acidic based on the EC, pH and TDS values. The order of abundance for anions and cations is HCO3 > Cl > SO42– > F and Na+ > Ca2+ > Mg2+ > K+ > Fe2+ > Mn2+ respectively. The observation of elevated BOD with lower DO even in the muddy area suggests anoxic condition (DO < 5 mg/L) rather than oxic condition (DO > 5 mg/L), based on the measured DO values (00.12–2.61 mg/L). The elevated ferric iron concentrations on the surface water, which later seeps into the groundwater systems, are due to excessive accumulation of dissolved organic matter (DOM) and the consequent reduction reaction within the DOM in surface water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig.10

Similar content being viewed by others

References

  • Aghamelu, O. P., Nnabo, P. N., & Ezeh, H. N. (2011). Geotechnical and environmental problems related to shales in the Abakaliki area, southeastern Nigeria. African Journal of Environmental Science and Technology, 5(2), 80–88.

    CAS  Google Scholar 

  • APHA. (2005). Standard Methods for the Examination of Water and Wastewater (21st ed.). Washington, DC.: American Public Health Association/American Water Works Association.

    Google Scholar 

  • Bauer, P., Supper, R., Zimmermann, S., & Kinzelbach, W. (2006). Geoelectrical imaging groundwater salinization in the Okavango Delta, Botswana. Journal of Applied Geophysics, 60, 126–141.

    Article  Google Scholar 

  • Beka, J. E., Udom, G. J., Nwankwoala, H. O., Etuedor, E., & Sangoremi, A. (2015). Portability and hydrogeochemical study of groundwater in Akwa Ibom state, Nigeria. International Journal of Science Inventions Today, 4(2), 186–200.

    Google Scholar 

  • Birgand, F., Skaggs, R. W., Chescheir, G. M., & Gilliam, J. W. (2007). Nitrogen removal in streams of agricultural catchments-a literature review. Critical Reviews in Environmental Science and Technology, 37(5), 381–487.

    Article  CAS  Google Scholar 

  • Cocker, M. D. (1995). Geochemistry and hydrochemistry of the Oconee River Basin. In K. J. Hatcher (Ed.), Proceedings of 1995 Georgia water resources conference held on the 11–12 April (pp. 67–70). Athens: University of Georgia.

    Google Scholar 

  • Doneen, L. D. (1964). Notes on water quality in agriculture (pp. 400). Davis: Department of Water Science and Engineering, University of California, Water Science and Engineering.

  • Ekström, S. M., Regnell, O., Reader, H. E., Nilsson, P. A., Löfgren, S., & Kritzberg, E. S. (2016). Increasing concentrations of iron in surface waters as a consequence of reducing conditions in the catchment area. Journal of Geophysical Research – Biogeosciences, 121(2), 479–493. https://doi.org/10.1002/2015jg003141.

    Article  Google Scholar 

  • Evans, U. F., George, N. J., Akpan, A. E., Obot, I. B., & Ikot, A. N. (2010). A study of superficial sediments and aquifers in parts of Uyo local government area, Akwa Ibom state, southern Nigeria, using electrical sounding method. E-Journal of Chemistry, 7(3), 1018–1022.

    Article  Google Scholar 

  • George, N. J. (2020). Appraisal of hydraulic flow units and factors of the dynamics and contamination of hydrogeological units in the littoral zones: a case study of Akwa Ibom State University and its environs, Mkpat Enin L.G.A, Nigeria. Natural Resources Research. https://doi.org/10.1007/s11053-020-09673-9.

  • George, N. J., Obianwu, V. I., Akpan, A. E., & Obot, I. B. (2010). Assessment of shallow aquiferous units and their coefficients of anisotropy in the coastal plain sands of Southern Ukanafun local government area, Akwa Ibom State, Southern Nigeria. Archives of Physics Research, 1(2), 118–128.

    Google Scholar 

  • George, N.J., Obianwu, V.I., Obot, I.B., 2011. Estimation of groundwater reserve in unconfined frequently exploited depth of aquifer using a combined surficial geo-physical and laboratory techniques in the Niger Delta, South – South, Nigeria. Advances in Applied Science Research vol. 2. Pelagia Research Library (USA) AASRFC, pp. 163–177.

  • George, N. J., Ekong, U. N., & Etuk, S. E. (2014). Assessment of economically accessible groundwater reserve and its protective capacity in eastern Obolo local government area of Akwa Ibom state, Nigeria, using electrical resistivity method. Geophysical Journal International. Hindawi Publishing Company, 2014, 1–10. https://doi.org/10.1155/2014/578981.

    Article  Google Scholar 

  • George, N. J., Emah, J. B., & Ekong, U. N. (2015). Geohydrodynamic properties of hydrogeological units in parts of Niger Delta, southern Nigeria. Journal of African Earth Sciences, 105, 55–63.

    Article  Google Scholar 

  • George, N. J., Akpan, A. E., & Ekanem, A. M. (2016a). Assessment of textural variational pattern and electrical conduction of economic and accessible quaternary hydrolithofacies via geoelectric and laboratory methods in SE Nigeria: a case study of select locations in Akwa Ibom state. Journal of the Geological Society of India, 88(4), 517–528.

    Article  CAS  Google Scholar 

  • George, N. J., Akpan, A. E., & Evans, U. F. (2016b). Prediction of geohydraulic pore pressure gradient differentials for hydrodynamic assessment of hydrogeological units using geophysical and laboratory techniques: a case study of the coastal sector of Akwa Ibom State, Southern Nigeria. Arabian Journal of Geosciences, 9(4), 1–13.

    Article  Google Scholar 

  • George, N. J., Akpan, A. E., & Akpan, F. S. (2017a). Assessment of spatial distribution of porosity and aquifer geohydraulic parameters in parts of the Tertiary – Quaternary hydrogeoresource of South-Eastern Nigeria. NRIAG Journal of Astronomy and Geophysics, 6, 422–433.

    Article  Google Scholar 

  • George, G. N. J., Ekanem, A. M., Ibanga, J. I., & Udosen, N. I. (2017b). Hydrodynamic implications of aquifer quality index (AQI) and flow zone indicator (FZI) in groundwater abstraction: a case study of coastal hydro-lithofacies in South-Eastern Nigeria. Journal of Coastal Conervation, 21(4), 759–776. https://doi.org/10.1007/s11852-017-0535-3.

    Article  Google Scholar 

  • Gomez-Velez, J. D., Harvey, J. W., Cardenas, B. M., & Kiel, B. A. (2015). Denitrification in the Mississippi River network controlled by flow through river bedforms. Nature Geoscience, 8, 941–945.

    Article  CAS  Google Scholar 

  • Grant, S. B., Stolzenbach, K., Azizian, M., Stewardson, M. J., Boano, F., & Bardini, L. (2014). First-order contaminant removal in the hyporheic zone of streams: Physical insights from a simple analytical model. Environmental Science & Technology, 48(19), 11369–11378.

    Article  CAS  Google Scholar 

  • Hancock, P. (2002). Human impacts on the stream-groundwater exchange zone. Environmental Management, 29, 761–781.

    Article  Google Scholar 

  • Harvey, J. W., Bohlke, J. K., Voytek, M. A., Scott, D., & Tobias, C. R. (2013). Hyporheic zone denitrification: Controls on effective reaction depth and contribution to whole-stream mass balance. Water Resources Research, 49, 6298–6316.

    Article  CAS  Google Scholar 

  • Hasan, M., Shang, Y., Akhter, G., & Jin, W. (2019). Application of VES and ERT for delineation of fresh-saline interface in alluvial aquifers of Lower Bari Doab, Pakistan. Journal of Applied Geophysics, 164, 200–213. https://doi.org/10.1016/j.jappgeo.2019.03.013.

    Article  Google Scholar 

  • Hodlur, G. K., Dhakate, R., & Andrade, R. (2006). Correlation of vertical electrical sounding and borehole-log data for delineation of saltwater and freshwater aquifers. Geophysics, 71(1), 12JF–1Z15. https://doi.org/10.1190/1.2169847.

    Article  Google Scholar 

  • Ibanga, J. I., & George, N. J. (2016). Estimating geohydraulic parameters, protective strength, and corrosivity of hydrogeological units: a case study of ALSCON, Ikot Abasi, southern Nigeria. Arabian Journal of Geosciences, 9(5), 1–16. https://doi.org/10.1007/s12517-016-2390-1.

    Article  Google Scholar 

  • Ibuot, J. C., Akpabio, G. T., & George, N. J. (2013). A survey of the repository of groundwater potential and distribution using geoelectrical resistivity method in Itu Local Government Area (L.G.A), Akwa Ibom State, southern Nigeria. Central European Journal of Geosciences, 5(4), 538–547. https://doi.org/10.2478/s13533-012-0152-5.

    Article  Google Scholar 

  • Ibuot, J. C., Okeke, F. N., George, N. J., & Obiora, D. N. (2017). Geophysical and physicochemical characterization of organic waste contamination of hydrolithofacies in thecoastal dumpsite of Akwa Ibom state, southern Nigeria and Daniel N. Obiora, Water Science & Technology: Water Supply, 17(6), 1626–1637. https://doi.org/10.2166/ws.2017.066.

    Article  CAS  Google Scholar 

  • Ibuot, J. C., Okeke, F. N., Obiora, D. N., & George, N. J. (2019). Assessment of impact of leachate on hydrogeological repositories in Uyo, southern Nigeria. Journal of Environmental Engineering and Science, 14(2), 97–107. https://doi.org/10.1680/jenes.18.00014.

    Article  Google Scholar 

  • Inim, I. J., Affiah, U. E., Asuaiko, E. R., Abia, U. B., & Tom, A. A. (2017). Hydrogeochemical evaluation of groundwater in coastal alluvial aquifer of Akwa Ibom, southeastern Nigeria. Journal of Coastal Sciences, 4(2), 1–8.

    Google Scholar 

  • Jones, J. B., & Mulholland, P. J. (2000). Streams and ground waters. San Diego: Academic.

    Google Scholar 

  • Kritzberg, E. S., & Ekström, S. M. (2012). Increasing iron concentrations in surface waters—a factor behind brownification. Biogeosciences, 9, 1465–1478.

    Article  CAS  Google Scholar 

  • Liu, J. T., Gao, Z. J., Wang, M., Li, Y., Ma, Y., Shi, M., & Zhang, H. (2018). Study on the dynamic characteristics of groundwater in the valley plain of Lhasa City. Environment and Earth Science, 77(18), 646.

    Article  CAS  Google Scholar 

  • Loke, M. H., & Barker, R. D. (1996). Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophysical Prospecting, 44, 131–152.

    Article  Google Scholar 

  • Mondal, N. C., Singh, V. P., & Sexena, V. K. (2010). Determining the interaction between groundwater saline water through groundwater ions chemistry. Journal of Hydrology, 381(1), 100–111.

    Article  CAS  Google Scholar 

  • Neal, S., Bennett, K., Cochrane, A (2018) The Lived Experiences of Multiculture. Oxford: Routledge.

  • Neal, C., Lofts, S., Evans, C. D., Reynolds, B., Tipping, E., & Neal, M. (2008). Increasing iron concentrations in UK upland waters. Aquatic Geochemistry, 14(3), 263–288. https://doi.org/10.1007/s10498-008-9036-1.

    Article  CAS  Google Scholar 

  • Newcomer Johnson, T., Kaushal, S., Mayer, P., Smith, R., & Sivirichi, G. (2016). Nutrient retention in restored streams and rivers: A global review and synthesis. Water, 8(4), 116. https://doi.org/10.3390/w8040116.

    Article  CAS  Google Scholar 

  • Ngah, S. A., & Nwankwoala, H. O (2013) Salinity dynamics: Trends and vulnerability of aquifers to contamination in the niger delta, Comprehensive Journal of Environmental and Earth Sciences, 2(2), 18–25.

  • Obianwu, V. I., George, N. J., & Okiwelu, A. A. (2011a). Preliminary geophysical deductions of lithological and hydrological conditions of the north-eastern sector of Akwa Iboms, south eastern Nigeria. Research Journal of Applied Sciences, Engineering and Technology, Maxwell Science Organization, 3(8), 806–811.

    Google Scholar 

  • Obianwu, V. I., George, N. J., & Udofia, K. M. (2011b). Estimation of aquifer hydraulic conductivity and effective porosity distributions using laboratory measurements on core samples in the Niger Delta, southern Nigeria. International Review of Physics, Praise Worthy Prize, Italy, 5(1), 19–24.

    Google Scholar 

  • Pazand, K., Gbanbari, Y., Hezarkhani, A., & Aghavali, N. (2011). Groundwater geochemistry in the middle Meshkinshahr basin of Ardabil province in Iran. Environment and Earth Science, 65, 871–879. https://doi.org/10.1007/s12665-011-1131-8.

    Article  CAS  Google Scholar 

  • Petters, S. W. (1989). Akwa Ibom state: physical background, soil and landuse and ecological problems (pp. 603). Technical Report for Government of Akwa Ibom State.

  • Raghunath, H. M. (1987). Groundwater (2nd ed.pp. 344–369). New Delhi: Wiley.

    Google Scholar 

  • Rutherford, M. C., O'callaghan, M., Hurford, J. L., Powrie, L. W., Schulze, R. E., Kunz, R. P., Davis, G. W., Hoffman, M. T., Mack, F (1995) Realized niche spaces and functional types: a framework for prediction of compositional change. Journal of Biogeography, 22, 523–531.

  • Richards, L. M. (1954). Diagnosis and improvement of saline and alkaline soils. USDA Hand Book Vol. 60, pp. 160.

  • Todd, D. (1980). Groundwater. Hydrology (2nd ed.). John Willey and Sons 315p.

  • UNICEF. (2008). UNICEF Handbook on Water Quality. In United Nations Children’s Fund (UNICEF), New York, USA., Pages: 179. New York: United Nations, 2000. Millennium Development Goals. United Nations.

    Google Scholar 

  • Wang, Y., Zhang, X., Feng, S., Niu, Z., & Chen, C. (2009). Study on inactivation of iron bacteria isolated from real drinkingwater distribution systems by free chlorine and chloramine. Annals of Microbiology, 59(2), 1–6.

    Google Scholar 

  • Wilcox, L. V. (1955). Classification and use of irrigation waters. US Department of Agricul-ture, Washington, DC Circular, No. 969, 1047 pp.

  • World Health Organization (2004). Guidelines for drinking-water quality. World Health Organization, Geneva.

  • Zarnetske, J. P., Haggerty, R., Wondzell, S. M., & Baker, M. A. (2011). Dynamics of nitrate production and removal as a function of residence time in the hyporheic zone. Journal of Geophysical Research, 116, G01025. https://doi.org/10.1029/2010JG001356.

    Article  CAS  Google Scholar 

  • Zarnetske, J. P., Haggerty, R., Wondzell, S. M., Bokil, V. A., & Gonzalez-Pinzon, R. (2012). Coupled transport and reaction kinetics control the nitrate source-sink function of hyporheic zones. Water Resources Research, 48, W11508. https://doi.org/10.1029/2012WR01189.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Geophysics Research Group members who contributed the work technically to ensure that field exercise was successful. The editor and the anonymous reviewers are greatly acknowledged for their constructive criticisms and suggestions that improved the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. J. George.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, J.E., George, N.J., Ekanem, A.M. et al. Electrostratigraphy and hydrogeochemistry of hyporheic zone and water-bearing caches in the littoral shorefront of Akwa Ibom State University, Southern Nigeria. Environ Monit Assess 192, 505 (2020). https://doi.org/10.1007/s10661-020-08436-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08436-6

Keywords

Navigation