Skip to main content
Log in

Hydrogeochemical facies and pollution status of groundwater resources of Owerri and environs, Southeastern Nigeria

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The aim of the study was to assess the status of groundwater quality of Owerri and environs, for drinking and irrigation purposes. Twenty-two (22) groundwater samples were collected and analyzed for both chemical and physical compositions. The result of the study showed that groundwater in the area is of good quality for drinking purposes, except for pH and Fe, which had higher concentrations in some areas. A weak correlation matrix within the sampled parameters of the groundwater was observed. Hydrogeochemical studies revealed that 91% of the samples are within the geochemical zone of 4 (strong acids (SO4 + Cl) exceed weak acids (CO3 + HCO3)), while 9% are of the geochemical zone of 3 (weak acids (CO3 + HCO3) exceed strong acids (SO4 + Cl)). The study shows an ionic trend of Cl  > Ca2+  > HCO3  > Na+  + K+  > Mg2+  > SO42− and hydrogeochemical facies of Na-Cl, Ca–Cl, Ca-CO3, Mg-Cl, and Mg-HCO3 of 45.5%, 36.4%, 4.5%, 4.5%, and 9.1% respectively. Chloro-alkaline values were negative except for B4 which was positive. The water quality index (WQI) revealed water quality status of excellent (4.5%), good (27.3%), poor (40.9%), and very poor (27.3%). Contamination factor (CF) reveals that the groundwater is slightly polluted while the pollution load index (PLI) revealed no noticeable pollution. Gibbs diagram revealed that the entire samples are within the rock dominance zone. Irrigation suitability studies showed that SAR of the groundwater was of excellent quality; %Na had good quality (27.3%), permissible quality (45.4%), and doubtful quality (27.3%); MH had 86.4% of the groundwater suitable, while 13.6% are not suitable; KR had suitable groundwater (59.1%) and unsuitable (40.9%); while the Wilcox diagram had 72.7% excellent water for irrigation and 27.3% permissible for irrigation. A routine check of groundwater in the study area is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Adimalla, N., Venkatayogi, S. (2018). Geochemical characterization and evaluation of groundwater suitability for domestic and agricultural utility in the semi-arid region of Basara, Telangana State, South India. Appl. Water Sci. 8 (1) https://doi.org/10.1007/s13201-018-0682-1

  • Ahmad A, Mohammad A. A, Majeda K, Nabil Z. (2020). Hydrogeochemical characterization and quality evaluation of groundwater suitability for domestic and agricultural uses in the state of Qatar. Groundwater for Sustainable Development 11.

  • Akakuru O. C., Maduka, E. C., & Akakuru, O. U. (2013). Hydrogeochemical characterization of surface water sources in Owerri Capital Territory, Southeastern Nigeria, IOSR Journal of Applied Geology and Geophysics, 1(2), www.iosrjournals.org.

  • Akakuru, O. C., Akudinobi, B. E. B, Usman, A. O. (2017). Organic and heavy metal assessment of groundwater sources around Nigeria National Petroleum Corporation oil depot Aba, South-eastern Nigeria. Journal of Natural Sciences Research, 7(24). 48–58. www.iiste.org.

  • Akakuru, O. C., Akudinobi, B. E. B., & Aniwetalu, E. U. (2015). Qualitative evaluation and hydrogeochemical attributes of groundwater in Owerri Capital Territory, Southeastern Nigeria. IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) 3(2) 12–18.

  • Akakuru, O. C., & Akudinobi, B. E. B. (2018). Determination of water quality index and irrigation suitability of groundwater sources in parts of coastal aquifers of Eastern Niger Delta, Nigeria. International Journal of Applied and Natural Sciences (IJANS), 7 (1), 1–6. www.iaset.us

  • Akakuru, O. C., Akudinobi, B. E., Nwankwoala, H. O. (2021). Compendious evaluation of groundwater in parts of Asaba, Nigeria for agricultural sustainability. Geosci J. https://doi.org/10.1007/s12303-021-0010-x

  • Alsuhaimi, A. O., Almohaimidi, K. M., & Momani, K. A. (2019). Preliminary assessment for physicochemical quality parameters of groundwater in Oqdus Area, Saudi Arabia. Journal of the Saudi Society of Agricultural Sciences, 18(1), 22–31. https://doi.org/10.1016/j.jssas.2016.12.002

    Article  Google Scholar 

  • APHA. (1998). Standard methods for examination of water and wastewater. Washington, D.C

  • Barbieri, M., Lorenzo, R., Stefania, V., Paulino, V. M., Angela, N., & Giuseppe, S. (2018). Assessment of groundwater quality in the buffer zone of Limpopo National Park, Gaza Province, Southern Mozambique. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-018-3474-0

  • Bhutian, R., Dipali, B. Ki, Khanna, D. R., Ashutosh, G. (2017). Geochemical distribution and environmental risk assessment of heavy metals in groundwater of an industrial area and its surroundings, Haridwar, India. Energy. Ecol. Environ. 2(2):155–167. https://doi.org/10.1007/s40974-016-0019-6

  • Brindha, K., Rajib, P., Julien, W., Mou, L. T., & Mahesh, K. S. (2020). Trace metals contamination in groundwater and implications on human health: Comprehensive assessment using hydrogeochemical and geostatistical methods. Environmental Geochemistry and Health, 2020(42), 3819–3839. https://doi.org/10.1007/s10653-020-00637-9

    Article  CAS  Google Scholar 

  • Chidambaram, S., Anandhan, P., Prasanna, M. V., Srinivasamoorthy, K., & Vasanthavigar, M. (2012). Major ion chemistry and identification of hydrogeochemical processes controlling groundwater in and around Neyveli Lignite Mines, Tamil Nadu, South India. Arabian Journal of Geosciences , 6, 3451–3467. https://doi.org/10.1007/s12517-012-0589-3

    Article  CAS  Google Scholar 

  • Chandra, S., Sonkamble, S., Auken, E., Ahmed, S., & Verma S. K. (2017). Mapping of 3D hydrogeological framework of the deccan basalt groundwater systems Using AEM. European Association of Geoscientists & Engineers, 1–5. https://doi.org/10.3997/2214-4609.201702164

  • Chukwuma, N., Johnbosco, M., Egbueri, C. (2019). The hydrogeochemical signatures quality indices and health risk assessment of water resources in Umunya district southeast Nigeria. Applied Water Science 9(1). https://doi.org/10.1007/s13201-019-0900-5

  • Department of Petroleum Resources (DPR). (2002). Environmental guidelines and standards for petroleum industry in Nigeria. Lagos, DPR Publication.

  • Egbueri, J. C., Ezugwu, C. K., Unigwe, C. O., Onwuka, O. S., Onyemesili, O. C., & Mgbenu, C. N. (2020). Multidimensional analysis of the contamination status, corrosivity and hydrogeochemistry of groundwater from parts of the Anambra Basin. Nigeria, Analytical Letters,. https://doi.org/10.1080/00032719.2020.1843049

    Article  Google Scholar 

  • Egbueri, J. C., Mgbenu, C. N. & Chukwu, C. N. (2019). Investigating the hydrogeochemical processes and quality of water resources in Ojoto and environs using integrated classical methods. Model. Earth Syst. Environ. 5, 1443–1461. https://doi.org/10.1007/s40808-019-00613-y

  • Ejiogu, B. C., Opara, A. I , Nwosu, E. I. , Nwofor, O. K., Onyema, J. C., & Chinaka, J. C. (2019). Estimates of aquifer geo-hydraulic and vulnerability characteristics of Imo State and environs, Southeastern Nigeria, using electrical conductivity data. Environmental Monitoring and Assessment(Springer) 191(4):238. https://doi.org/10.1007/s10661-019-7335-1.

  • Eyankware, M. O., Obasi, P. N., Omo-Irabor, O. O., Akakuru, O. C. (2020). Hydrochemical characterization of an abandoned quarry and mine water for domestic and irrigation uses in Abakaliki, southeast Nigeria. Model. Earth Syst. Environ. (2020). https://doi.org/10.1007/s40808-020-00827-5

  • Ezeigbo, H. I. (1987). Quality of water resources in Anambra State. Nigeria. Jour. Min. Geol., 23, 97–103.

    Google Scholar 

  • Ghalib, H. B. (2017). Groundwater chemistry evaluation for drinking and irrigation utilities in east Wasit province. Central Iraq. Appl. Water Sci., 7(7), 3447–3467. https://doi.org/10.1007/s13201-017-0575-8

    Article  CAS  Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170, 1088–1090. https://doi.org/10.1126/science.170.3962.1088

    Article  CAS  Google Scholar 

  • Gopinath, S., Srinivasamoorthy, K.,  Saravanan, K., et al. (2016). Modeling saline water intrusion in Nagapattinam coastal aquifers Tamilnadu, India. Modeling Earth Systems and Environ,  2, 1–10.https://doi.org/10.1007/s40808-015-0058-6

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A Sedimentological Approach. Water Res, 14, 975–1001.

    Google Scholar 

  • He, X., Wu, J., & He, S. (2019). Hydrochemical characteristics and quality evaluation of groundwater in terms of health risks in Luohe aquifer in Wuqi County of the Chinese Loess Plateau, northwest China. Human and Ecolological Risk Assessment, 25(1–2):32–51. https://doi.org/10.1080/10807039.2018.1531693

  • Ibe, F. C., Opara, A. I., Ibe, B. O., & Amaobi, C. E. (2019). Application of assessment models for pollution and health risk from effluent discharge into a tropical stream: Case study of the Inyishi River, Southeastern, Nigeria; Accepted for Publication, Environmental Monitoring and Assessment (Springer); Assess 191:753. https://doi.org/10.1007/s10661-019-7936-8

  • Ibe, F. C., Enyoh, C. E., Opara, A. I., & Ibe, B. O. (2020a). Evaluation of pollution status of groundwater resources of parts of Owerri metropolis and environs, Southeastern Nigeria, using health risk and contamination models; International Journal of Energy and Water Resources(Springer),vol.4(2)(Online First). https://doi.org/10.1007/s42108-020-00071-8

  • Ibe, F. C., Opara, A. I., & Ibe, B. O. (2020b). Application of pollution risk evaluation models in groundwater systems in the vicinity of automobile scrap markets in Owerri municipal and environs, southeastern Nigeria; Scientific African (Elsevier), volume 8, e00450(Online First). https://doi.org/10.1016/j.sciaf.2020.e00450

  • Ibe, F. C., Opara, A. I., Amaobi, C. E., & Ibe, B. O. (2021). Environmental risk assessment of the intake of contaminants in aquifers in the vicinity of a reclaimed waste dumpsite in Owerri Municipal, Southeastern Nigeria. Accepted for Publication, Applied Water Science (Springer). 11:24. https://doi.org/10.1007/s13201-020-01355-4.

  • Ige, O.O., Ameh, H.O. & Olaleye, I.M. (2021). Borehole inventory, groundwater potential and water quality studies in Ayede Ekiti, Southwestern Nigeria. Discov Water 1, 2. https://doi.org/10.1007/s43832-020-00001-z

  • Kacmaz, H., & Nakoman, M. E. (2010). Evaluation of shallow groundwater 557 quality for irrigation purposes in the Koprubasi Uranium Area (Manisa, Turkey). BALWOIS, 25, 1–9. https://doi.org/10.1029/TR025i006p00914

    Article  Google Scholar 

  • Keesari, T., Ramakumar, K. L., Chidambaram, S., Pethperumal, S., & Thilagavathi, R. (2016). Understanding the hydrochemical behavior of groundwater and its suitability for drinking and agricultural purposes in Pondicherry area, South India—a step towards sustainable development. Groundwater for Sustainable Development, 2, 143–153.

    Article  Google Scholar 

  • Kelley, W. P. (1940). Permissible composition and concentration of irrigation waters. Proc ASCE, 66, 607.

    CAS  Google Scholar 

  • Kelly, W. P. (1963). Use of saline irrigation water. Soil Science, 95(4), 355–391.

  • Kumar, S. K., Rammohan, V., Sahayam, J. D., & Jeevanandam, J. (2009). Assessment of groundwater quality and Hydrogeochemistry of Manimuktha River basin, Tamil Nadu, India. Environmental Monitoring and Assessment, 159, 341–351.

    Article  CAS  Google Scholar 

  • Li, P., Jianhua, W., & Hui, Q. (2013). Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County. China. Environ Earth Sci., 69, 2211–2225.

    Article  CAS  Google Scholar 

  • Li, P., Wu, J., Qian, H., et al. (2016). Hydrogeochemical Characterization of Groundwater in and Around a Wastewater Irrigated Forest in the Southeastern Edge of the Tengger Desert, Northwest China. Exposure and Health, 8, 331–348. https://doi.org/10.1007/s12403-016-0193-y

  • Lorenzo, R., Maurizio, B., Paulino, V. M., Angela, N., Giuseppe, S., Stefania, V. (2020). Potential toxic elements in groundwater and their health risk assessment in drinking water of Limpopo National Park, Gaza Province, Southern Mozambique. Environ Geochem Health https://doi.org/10.1007/s10653-019-00507-z

  • Makaya, E. (2016). Prevalence of persistent organic pollutants in Blantyre - Malawi. Tanyanyiwa Vincent, American Journal of Environmental Protection, 4(3), 61–66.

    Google Scholar 

  • Mallick, J., Singh, C., Almesfer, M., Kumar, A., Khan, R., Islam, S., & Rahman, A. (2018). Hydro-geochemical assessment of groundwater quality in the Aseer region. Saudi Arabia. Water, 10(12), 1847. https://doi.org/10.3390/w10121847

    Article  CAS  Google Scholar 

  • Maurizio, B., Angelica, G., Anila, N., & Matteo, R. (2015). First groundwater chemical status assessment of the Buna River-Protected Landscape (Albania). Environment and Earth Science. https://doi.org/10.1007/s12665-015-4657-3

    Article  Google Scholar 

  • Mitra, S., & Roy, P. (2011). BTEX: A serious groundwater contaminant. Research Journal of Environmental Sciences, 5, 394–398.

    Article  CAS  Google Scholar 

  • Mokoena, P., Thokozani, K., & Jan, V. B. (2020). Hydrogeochemical characteristics and evaluation of groundwater quality for domestic and irrigation purposes: A case study of the Heuningnes Catchment, Western Cape Province. South Africa. SN Applied Sciences, 2, 1548.

    Article  CAS  Google Scholar 

  • Moussa, A. B., Sawsan, C. l., Houcem, M., Sarra, B. H., Hatem, E. (2020). Hydrogeochemistry and evaluation of groundwater suitability for irrigation purpose in the Mornag region, northeastern Tunisia. Environment, Development and Sustainability.1–21

  • Murkute, Y. A. (2014). Hydrogeochemical characterization and quality assessment of groundwater around Umrer coal mine area Nagpur District, Maharashtra, India. Environment and Earth Science, 72, 4059–4073. https://doi.org/10.1007/s12665-014-3295-5

    Article  CAS  Google Scholar 

  • Nnaji, A. O., & Duru, P. N. (2007). An insight into the role of urbanisation in the pollution of Nworie River, Owerri. Proceeding of the 49th A.N.A. meeting, University of Abuja: 51–57.

  • Nwagbara, J. O., Ibeneme, S. I., Dim, E. E., Iroegbu, U. K., Selemo, A. O., Ejiogu, B. C., & Onyekuru, S. O. (2013). Hydrogeochemical analysis of water sample from Nworie river, Owerri Southeastern Nigeria. International Journal of Engineering and Science (IJES), 2(9), 58–67.

    Google Scholar 

  • Olofinlade, W. S., Daramola, S. O., & Olabode, O. F. (2018). Hydrochemical and statistical modeling of groundwater quality in two contrasting geological terrains of southwestern Nigeria. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-018-0486-1

    Article  Google Scholar 

  • Onyeagocha, A. C. (1980). Petrography and depositional environment of the Benin Formation, Nigeria. Journal of Mining and Geology, 17, 147–151.

    Google Scholar 

  • Onyeanuna, C. Chukwuemeka, Patience John and N. Temple Nwankwo (2019). Geochemical characterization and assessment of groundwater quality in Owerri metropolis, South- Eastern Nigeria. Journal of Geography, Environment and Earth Science International. 19(1): 1-24.

  • Padhi, S., Rangarajan, R., & Rajeshwar, K. (2017). Assessment of hydro-geochemical evolution mechanism and suitability of groundwater for domestic and irrigation use in and around Ludhiana city, Punjab. Indian Journal of Geophysical Union, 21(4), 20–30.

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses Eos. Transactions American Geophysical Union, 25, 914–928. https://doi.org/10.1029/TR025i006p00914

    Article  Google Scholar 

  • Qian, C., Xiong, W., Wen-Ping, M., Rui-Zhi, F., Ge, Z., Zhuo-Ran, W., & Dan-dan, W. (2016). Hydrogeochemical characterization and suitability assessment of groundwater in an agro-pastoral area, Ordos Basin. NW China. Environ Earth Sci., 75, 1356. https://doi.org/10.1007/s12665-016-6123-2

    Article  CAS  Google Scholar 

  • Raju, N. J., Shukla, U. K., & Ram, P. (2011). Hydrogeochemistry for the assessment of groundwater quality in Varanasi: A fast-urbanizing center in Uttar Pradesh, India. Environmental Monitoring and Assessment, 173, 279–300.

    Article  CAS  Google Scholar 

  • Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils soil science 78.

  • Ricolfi, L., Barbieri, M., Muteto, P.V. et al (2020) Potential toxic elements in groundwater and their health risk assessment in drinking water of Limpopo National Park, Gaza Province, Southern Mozambique. Environ Geochem Health 42, 2733–2745. https://doi.org/10.1007/s10653-019-00507-z

  • Sakram, G., & Adimalla, N. (2018). Hydrogeochemical characterization and assessment of water suitability for drinking and irrigation in crystalline rocks of Mothkur region, Telangana State. South India. Applied Water Science, 8, 143.

    Article  Google Scholar 

  • Salem, Z. E., Atwia, M. G., & El-Horiny, M. M. (2015). Hydrogeochemical analysis and evaluation of groundwater in the reclaimed small basin of Abu Mina. Egypt. Hydrogeol. J., 23, 1781–1797.

    Article  CAS  Google Scholar 

  • Singh, K. K., Tewari, G., Kumar, S. (2020). Evaluation of groundwater quality for suitability of irrigation purposes: a case study in the Udham Singh Nagar, Uttarakhand. J Chem 2020:1–15. https://doi.org/10.1155/2020/6924026

  • Sherrard, J. H., Moore, D. R., & Dillaha, T. A. (1987). Total dissolved solids: Determination, sources, effects, and removal. The Journal of Environmental Education, 18, 19–24. https://doi.org/10.1080/00958964.1987.9943484

    Article  Google Scholar 

  • Shyu, G. S., Cheng, B. Y., Chiang, C. T., Yao, P. H., & Chang, T. K. (2011). Applying factor analysis combined with kriging and information entropy theory for mapping and evaluating the stability of groundwater quality variation in Taiwan. Int J Environ Res PubHealth, 8, 1084–1109. https://doi.org/10.3390/ijerph8041084

    Article  CAS  Google Scholar 

  • Srinivasamoorthy, K., Gopinath, M., Chidambaram, S., Vasanthavigar, M., & Sarma, V. S. (2016). Hydrochemical characterization and quality appraisal of groundwater from Pungar sub-basin, Tamilnadu. India. J. King Saud Univ. Sci., 26(1), 37–52.

    Article  Google Scholar 

  • Subba Rao, N., Subrahmanyam, A., Ravi Kumar, S., Srinivasulu, N., Babu Rao, G., Rao, P. S., & Reddy, G. V. (2012). Geochemistry and quality of groundwater of Gummanampadu sub-basin, Guntur District, Andhra Pradesh, India. Environmental Earth Sciences, 67, 1451–1471. https://doi.org/10.1007/s12665-012-1590-6

    Article  CAS  Google Scholar 

  • Szabolcs, I., Darab, C. (1964). The influence of irrigation water of high sodium carbonate content of soils In Szabolcs I (Ed), Proceedings of 8th international congress of the international soc of soil science. Research Institute of Soil Science and Agrochemistry, Hungarian Academy of Science, 803–812.

  • Talib, M. A., Zhonghua, T., Asfandyar, S., Jamil, S., Muhammad, F., & Mehak, F. (2019). Hydrogeochemical characterization and suitability assessment of groundwater: A case study in Central Sindh, Pakistan. International Journal of Environmental Research and Public Health, 16, 886.

    Article  CAS  Google Scholar 

  • Tiwari, A. K., Raffaella, G., Marina, D. M., & Muriel, L. (2017). Evaluation of hydrogeochemical processes and groundwater quality for suitability of drinking and irrigation purposes: A case study in the Aosta Valley region, Italy. Arab J Geosci 10:264 Todd DK, Ways LW (2004) Groundwater hydrology. Wiley, USA

  • Todd, D. K. (1980). Groundwater hydrology, 2nd eds. Wiley, New York.

  • Todd, D. K., & Mays, L. W. (2004). Groundwater Hydrology, 3rd Ed. John Wiley and Sons, Inc. New York, pp. 267–315.

  • Udoh, E. J., & Etim, N. A. (2007). Analysis of domestic water consumption pattern by farming households in Itu, Akwa Ibom State. Nigeria. European Journal of Social Sciences, 5(2), 76–82.

    Google Scholar 

  • Urom, O. O., Opara, A. I., Usen, O. S., et al. (2021). Electro-geohydraulic estimation of shallow aquifers of Owerri and environs, Southeastern Nigeria using multiple empirical resistivity equations. Int J Energy Water Res. https://doi.org/10.1007/s42108-021-00122-8

    Article  Google Scholar 

  • Vincy, M. V., Brilliant, R., & Pradeepkumar, A. P. (2015). Hydrochemical characterization and quality assessment of groundwater for drinking and irrigation purposes: A case study of Meenachil River Basin, Western Ghats, Kerala. India. Environ Monit Assess, 187, 4217.

    Article  CAS  Google Scholar 

  • Wilcox, L. V. (1955). Classification and Use of Irrigation Water. USDA, Circular, Washington, DC, USA, p. 969.

  • Yang, Q., Xu, Y., Liu, S., He, J., & Long, F. (2011). Concentration and potential health risk of heavy metals in market vegetables in Chongqing. China. Ecotoxicol Environ Saf, 74(6), 1664–1669.

    Article  CAS  Google Scholar 

  • Yetiþ, R., Ayþe, D. A., Ayþegül, D. Y., Mehmet, Y. Y. (2019). Hydrogeochemical characteristics and quality assessment of groundwater in Balikligol Basin, Sanliurfa, Turkey. Environmental Earth Sciences 78:331 https://doi.org/10.1007/s12665-019-8330-0

  • Yahaya, S.M., Abubakar, F., & Abdu, N. (2021). Ecological risk assessment of heavy metal-contaminated soils of selected villages in Zamfara State, Nigeria. SN Applied Sciences, 3, 168. https://doi.org/10.1007/s42452-021-04175-6

  • Yeşilnacar, M., Demir Yetiş, A., Dülgergil, Ç. T., Kumral, M., Atasoy, A. D., Rastgeldi Doğan, T., Tekiner, S. İ., Bayhan, İ., Aydoğdu, M. (2016). Geomedical assessment of an area having high-fluoride groundwater in southeastern Turkey. Env Earth Sci 75:162.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Obinna Chigoziem Akakuru.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akakuru, O.C., Akudinobi, B., Opara, A.I. et al. Hydrogeochemical facies and pollution status of groundwater resources of Owerri and environs, Southeastern Nigeria. Environ Monit Assess 193, 623 (2021). https://doi.org/10.1007/s10661-021-09364-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09364-9

Keywords

Navigation