Skip to main content
Log in

Understanding the microstructure, mineralogical and adsorption characteristics of guar gum blended soil as a liner material

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Guar gum blended soil (GGBS) offers potentially advantageous engineering characteristics of hydraulic conductivity and strength for a soil to be used as a liner material. Characterization techniques such as X-ray diffraction, X-ray fluorescence, Fourier transform infrared spectroscopy and scanning electron microscope were used to examine the mineral composition, functional groups and morphological changes in the unblended soil (UBS) and GGBS. These characterization approaches are used to understand adsorption-associated mechanisms of Pb(II) removal. Batch adsorption tests were performed to evaluate the adsorption capacity of UBS and the GGBS with various proportions (0.5%, 1.0%, 1.5% and 2.0%) of guar gum (GG) towards the removal of Pb(II) ions. Batch adsorption experiments were conducted by varying the pH, dosage of adsorbent, concentration of metal ions and contact time. The experimental results showed that the optimum removal of Pb(II) ions was high at a pH of 3.0 for all blends, and adsorption tests beyond 3.0 pH demonstrated a decline in adsorption performance. The maximum Pb(II) removal efficiency of 95% was obtained using the 2.0% GGBS. The isotherm model assessment for adsorption experimental data of Pb(II) showed the best fit for the Langmuir model on using GG. The present research demonstrated that the guar gum–treated blends exhibited potential Pb(II) ion adsorption properties and therefore can be used as sustainable liner material in sanitary landfills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • ASTM D2487. (2017). Standard practice for classification of soils for engineering purposes (Unified Soil Classification System), ASTM International, West Conshohocken, PA, www.astm.org

  • ASTM D2216. (2019). Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass. ASTM International, West Conshohocken, PA, www.astm.org

  • ASTM D1293. (2018). Standard test methods for pH of water, ASTM International, West Conshohocken, PA, www.astm.org

  • ASTM E168. (2016). Standard practices for general techniques of infrared quantitative analysis, ASTM International, West Conshohocken, PA, www.astm.org

  • Abdelwaheb, A., Moncef, Z., & Hamed, B. D. (2012). Landfill leachate generation and its impact on water at an urban landfill (Jebel Chakir, Tunisia). Hydrology Current Research, 03(02), 1000128. https://doi.org/10.4172/2157-7587.1000128

    Article  CAS  Google Scholar 

  • Ahmad, R., & Hasan, I. (2017). L-methionine montmorillonite encapsulated guar gum-g-polyacrylonitrile copolymer hybrid nanocomposite for removal of heavy metals. Groundwater for Sustainable Development, 5, 75–84. https://doi.org/10.1016/j.gsd.2017.03.006

    Article  Google Scholar 

  • Ahmad, R., & Haseeb, S. (2015). Absorptive removal of Pb2+, Cu2+ and Ni2+ from the aqueous solution by using groundnut husk modified with Guar Gum (GG): Kinetic and thermodynamic studies. Groundwater for Sustainable Development, 1(1–2), 41–49. https://doi.org/10.1016/j.gsd.2015.11.001

    Article  Google Scholar 

  • Ahmad, R., & Mirza, A. (2018). Synthesis of Guar gum/bentonite a novel bionanocomposite: Isotherms, kinetics and thermodynamic studies for the removal of Pb (II) and crystal violet dye. Journal of Molecular Liquids, 249, 805–814. https://doi.org/10.1016/j.molliq.2017.11.082

    Article  CAS  Google Scholar 

  • Bellir, K., Bencheikh-Lehocine, M., Meniai, A. H., & Gherbi, N. (2005). Study of the retention of heavy metals by natural material used as liners in landfills. Desalination, 185(1–3), 111–119. https://doi.org/10.1016/j.desal.2005.03.074

    Article  CAS  Google Scholar 

  • Bernard, E., Jimoh, A., & Odigure, J. O. (2013). Heavy metals removal from Industrial wastewater by activated carbon prepared from coconut shell. Research Journal of Chemical Sciences, 3(8), 3–9.

    CAS  Google Scholar 

  • Boateng, T. K., Opoku, F., & Akoto, O. (2019). Heavy metal contamination assessment of groundwater quality: A case study of Oti landfill site. Kumasi. Applied Water Science, 9(2), 1–15. https://doi.org/10.1007/s13201-019-0915-y

    Article  CAS  Google Scholar 

  • Bourliva, A., Sikalidis, A. K., Papadopoulou, L., Betsiou, M., Michailidis, K., Sikalidis, C., & Filippidis, A. (2018). Removal of Cu 2+ and Ni 2+ ions from aqueous solutions by adsorption onto natural palygorskite and vermiculite. Clay Minerals, 53(1), 1–15. https://doi.org/10.1180/clm.2017.1

    Article  CAS  Google Scholar 

  • Casas, J. A., Mohedano, A. F., & García-Ochoa, F. (2000). Viscosity of guar gum and xanthan/guar gum mixture solutions. Journal of the Science of Food and Agriculture, 80(12), 1722–1727. https://doi.org/10.1002/1097-0010(20000915)80:12%3c1722::AID-JSFA708%3e3.0.CO;2-X

    Article  CAS  Google Scholar 

  • Chang, I., Im, J., Prasidhi, A. K., & Cho, G. (2015). Effects of Xanthan gum biopolymer on soil strengthening. Construction and Building Materials, 74, 65–72. https://doi.org/10.1016/j.conbuildmat.2014.10.026

    Article  Google Scholar 

  • Chen, R., Zhang, L., & Budhu, M. (2013). Biopolymer stabilization of mine tailings. Journal of Geotechnical and Geoenvironmental Engineering, 139, 1802–1807. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000902

    Article  CAS  Google Scholar 

  • Chen, Y. G., Liu, X. M., Lei, H. N., Ye, W. M., & Cui, Y. J. (2019). Adsorption property of Pb (II) by the laterite-bentonite mixture used as waste landfill liner. Advances in Civil Engineering2019https://doi.org/10.1155/2019/2879156

  • Cokca, E., & Yilmaz, Z. (2004). Use of rubber and bentonite added fly ash as a liner material. Waste Management, 24, 153–164. https://doi.org/10.1016/j.wasman.2003.10.004

    Article  CAS  Google Scholar 

  • Dan, A., Oka, M., Fujii, Y., Soda, S., Ishigaki, T., Machimura, T., & Ike, M. (2017). Removal of heavy metals from synthetic land fill leachate in lab-scale vertical flow constructed wetlands. Science of the Total Environment, 584, 742–750. https://doi.org/10.1016/j.scitotenv.2017.01.112

    Article  CAS  Google Scholar 

  • Dehghan, H., Tabarsa, A., Latifi, N., & Bagheri, Y. (2018). Use of xanthan and guar gums in soil strengthening. Clean Technologies and Environmental Policy, 21(1), 155–165. https://doi.org/10.1007/s10098-018-1625-0

    Article  CAS  Google Scholar 

  • Deka, A., & Sekharan, S. (2017). Contaminant retention characteristics of fly ash-bentonite mixes. Waste Management and Research, 35(1), 40–46. https://doi.org/10.1177/0734242X16670002

    Article  CAS  Google Scholar 

  • Dong, Y., Zhou, M., Xiang, Y., Wan, S., Li, H., & Hou, H. (2019). Barrier effect of coal bottom ash-based geopolymers on soil contaminated by heavy metals. RSC Advances, 9(49), 28695–28703. https://doi.org/10.1039/c9ra05542h

    Article  CAS  Google Scholar 

  • de Ellendersen, L., S. N., Milinski, M. C., Feroldi, M., Zadinelo, I. V., Lilian Dena dos Santos, G. I. B. de, Muniz, et al. (2018). Biopolymer foam for remediation of aquatic environments contaminated with particulates and heavy metals. Journal of Environmental Chemical Engineering, 6(5), 6131–6138. https://doi.org/10.1016/j.jece.2018.09.019

    Article  CAS  Google Scholar 

  • Ezeakacha, C. P., Rabbani, A., Salehi, S., & Ghalambor, A. (2018). Integrated image processing and computational techniques to characterize formation damage. In SPE International Conference and Exhibition on Formation Damage Control. Society of Petroleum Engineers. https://doi.org/10.2118/189509-ms

  • Falamaki, A., Eskandari, M., Homaee, M., & Gerashi, M. (2018). An improved multilayer compacted clay liner by adding bentonite and phosphate compound to sandy soil. KSCE Journal of Civil Engineering, 22(10), 3852–3859. https://doi.org/10.1007/s12205-018-1554-9

    Article  Google Scholar 

  • Freundlich, H., & Helle, W. (1939). The adsorption of cis- and trans-azobenzene. Journal of the American Chemical Society, 61(8), 2228–2230.

    Article  CAS  Google Scholar 

  • Garg, A., Reddy, N. G., Huang, H., Buragohain, P., & Kushvaha, V. (2020). Modelling contaminant transport in fly ash–bentonite composite landfill liner: Mechanism of different types of ions. Scientific Reports, 10(1), 11330. https://doi.org/10.1038/s41598-020-68198-6

    Article  CAS  Google Scholar 

  • Gueddouda, M. K., Goual, I., Benabed, B., Taibi, S., & Aboubekr, N. (2016). Hydraulic properties of dune sand e bentonite mixtures of insulation barriers for hazardous waste facilities. Journal of Rock Mechanics and Geotechnical Engineering, 8(4), 541–550. https://doi.org/10.1016/j.jrmge.2016.02.003

    Article  Google Scholar 

  • Gunarathne, V., Rajapaksha, A. U., Vithanage, M., Alessi, D. S., Selvasembian, R., Naushad, M., & Ok, Y. S. (2020). Hydrometallurgical processes for heavy metals recovery from industrial sludges. Critical Reviews in Environmental Science and Technology, 1-41. https://doi.org/10.1080/10643389.2020.1847949

  • Hariharan, A., Harini, V., Sandhya, S., & Rangabhashiyam, S. (2020). Waste Musa acuminata residue as a potential biosorbent for the removal of hexavalent chromium from synthetic wastewater. Biomass Conversion and Biorefinery, (Iii). https://doi.org/10.1007/s13399-020-01173-3

  • Hu, S., Wu, Y., Yi, N., Zhang, S., Zhang, Y., & Xin, X. (2017). Chemical properties of dissolved organic matter derived from sugarcane rind and the impacts on copper adsorption onto red soil. Environmental Science and Pollution Research, 24(27), 21750–21760. https://doi.org/10.1007/s11356-017-9834-3

    Article  CAS  Google Scholar 

  • Iftikhar, S., Turan, V., Tauqeer, H. M., Rasool, B., Zubair, M., Mahmood-ur-Rahman, et al. (2021). Phytomanagement of As-contaminated matrix: Physiological and molecular basis. Elsevier Inc. https://doi.org/10.1016/b978-0-12-819382-2.00005-3

    Book  Google Scholar 

  • Kanmani, S., & Gandhimathi, R. (2013). Assessment of heavy metal contamination in soil due to leachate migration from an open dumping site. Applied Water Science, 3(1), 193–205. https://doi.org/10.1007/s13201-012-0072-z

    Article  CAS  Google Scholar 

  • Kaya, A., & Durukan, S. (2004). Utilization of bentonite-embedded zeolite as clay liner. Applied Clay Science, 25(1–2), 83–91. https://doi.org/10.1016/j.clay.2003.07.002

    Article  CAS  Google Scholar 

  • Khan, M. A., Mahmood-ur-Rahman, R., P. M. A., Zubair, M., Rasool, B., Khan, M. K., et al. (2020). Associative effects of lignin-derived biochar and arbuscular mycorrhizal fungi applied to soil polluted from Pb-acid batteries effluents on barley grain safety. Science of the Total Environment, 710, 136294. https://doi.org/10.1016/j.scitotenv.2019.136294

    Article  CAS  Google Scholar 

  • Kumar, S. A., Sujatha, E. R., Pugazhendi, A., & Jamal, M. T. (2021). Guar gum - stabilized soil: A clean, sustainable and economic alternative liner material for landfills. Clean Technologies and Environmental Policy. https://doi.org/10.1007/s10098-021-02032-z

    Article  Google Scholar 

  • Kumar, S. A., & Sujatha, E. R. (2021a). An appraisal of the hydro-mechanical behaviour of polysaccharides, xanthan gum, guar gum and β-glucan amended soil. Carbohydrate Polymers, 265(March), 118083. https://doi.org/10.1016/j.carbpol.2021.118083

    Article  CAS  Google Scholar 

  • Kumar, S. A., & Sujatha, E. R. (2021b). Experimental investigation on the shear strength and deformation behaviour of xanthan gum and guar gum treated clayey sand. Geomechanics and Engineering, 26(2), 101. https://doi.org/10.12989/gae.2021.26.2.101

  • Lakherwal, D. (2014). Adsorption of heavy metals: A review. International Journal of Environmental Research and Development, 4(1), 41–48.

    Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361–1403.

    Article  CAS  Google Scholar 

  • Lata, S., & Samadder, S. R. (2014). Removal of heavy metals using rice husk: A review. International Journal of Environmental Research and Development, 4(2), 165–170.

    Google Scholar 

  • Li, L., Lin, C., & Zhang, Z. (2017). Utilization of shale-clay mixtures as a landfill liner material to retain heavy metals. Materials and Design, 114, 73–82. https://doi.org/10.1016/j.matdes.2016.10.046

    Article  CAS  Google Scholar 

  • Lu, H., Zhang, Q., Dong, Y., Li, J., & Zhang, X. (2016). The adsorption capacity, pore structure, and thermal behavior of the modified clay containing SSA. Advances in Materials Science and Engineering, 2016, 9894657. https://doi.org/10.1155/2016/9894657

    Article  Google Scholar 

  • Manikanta, D., & Uma Shankar, M. (2019). Use of sawdust blended with bentonite and cement mixtures to retain diesel oil contaminants as a liner in a landfill. Indian Geotechnical Journal. https://doi.org/10.1007/s40098-019-00378-2

    Article  Google Scholar 

  • Manikanta, D., & Uma Shankar, M. (2020). Correlation studies on geotechnical properties of various industrial byproducts generated from thermal power plants, iron and steel industries as liners in a landfill - A detailed review. Journal of Cleaner Production, 261, 121207. https://doi.org/10.1016/j.jclepro.2020.121207

    Article  Google Scholar 

  • Mishra, A. K., & Ravindra, V. (2015). On the utilization of fly ash and cement mixtures as a landfill liner material. International Journal of Geosynthetics and Ground Engineering, 1(2), 1–7. https://doi.org/10.1007/s40891-015-0019-1

    Article  Google Scholar 

  • Mohan, S., & Gandhimathi, R. (2009). Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent. Journal of Hazardous Materials, 169(1–3), 351–359. https://doi.org/10.1016/j.jhazmat.2009.03.104

    Article  CAS  Google Scholar 

  • Mozgawa, W., Król, M., Dyczek, J., & Deja, J. (2014). Investigation of the coal fly ashes using IR spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 132, 889–894. https://doi.org/10.1016/j.saa.2014.05.052

    Article  CAS  Google Scholar 

  • Mukherjee, S., Mukhopadhyay, S., Zakwan, M., Zafri, B., Zhan, X., Ali, M., & Sen, B. (2018). Application of guar gum for the removal of dissolved lead from wastewater. Industrial Crops & Products, 111, 261–269.

    Article  CAS  Google Scholar 

  • Perez, T., Pasquini, D., Faria, A. D., Vieira, E., Henrique, M., Alves, D., et al. (2019). Efficient removal of lead ions from water by magnetic nanosorbents based on manganese ferrite nanoparticles capped with thin layers of modified biopolymers. Journal of Environmental Chemical Engineering, 7(1), 102892. https://doi.org/10.1016/j.jece.2019.102892

    Article  CAS  Google Scholar 

  • Phanikumar, B. R., & Uma Shankar, M. (2011). Correlation studies on liquid limit and free swell index of fly ash- stabilised expansive clay liners. In Proceedings of Indian Geotechnical Conference (pp. 761–764).

  • Prakash, N., Sudha, P. N., & Renganathan, N. G. (2012). Copper and cadmium removal from synthetic industrial wastewater using chitosan and nylon 6. Environmental Science and Pollution Research, 19(7), 2930–2941. https://doi.org/10.1007/s11356-012-0801-8

    Article  CAS  Google Scholar 

  • Prashanth, J. P., Sivapullaiah, P. V., & Sridharan, A. (2001). Pozzolanic fly ash as a hydraulic barrier in land fills. Engineering Geology, 60(1–4), 245–252. https://doi.org/10.1016/S0013-7952(00)00105-8

    Article  Google Scholar 

  • Qi, L., & Xu, Z. (2004). Lead sorption from aqueous solutions on chitosan nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 251(1–3), 183–190. https://doi.org/10.1016/j.colsurfa.2004.10.010

    Article  CAS  Google Scholar 

  • Rabbani, A., & Salehi, S. (2017). Dynamic modeling of the formation damage and mud cake deposition using filtration theories coupled with SEM image processing. Journal of Natural Gas Science and Engineering, 42, 157–168. https://doi.org/10.1016/j.jngse.2017.02.047

    Article  Google Scholar 

  • Rangabhashiyam, S., & Selvaraju, N. (2015). Adsorptive remediation of hexavalent chromium from synthetic wastewater by a natural and ZnCl2 activated Sterculia guttata shell. Journal of Molecular Liquids, 207, 39–49. https://doi.org/10.1016/j.molliq.2015.03.018

    Article  CAS  Google Scholar 

  • Rangabhashiyam, S., & Vijayaraghavan, K. (2019). Biosorption of Tm(III) by free and polysulfone-immobilized Turbinaria conoides biomass. Journal of Industrial and Engineering Chemistry, 80, 318–324. https://doi.org/10.1016/j.jiec.2019.08.010

    Article  CAS  Google Scholar 

  • Rasool, B., Ramzani, P. M. A., Zubair, M., Khan, M. A., Lewińska, K., Turan, V., & Iqbal, M. (2021). Impacts of oxalic acid-activated phosphate rock and root-induced changes on Pb bioavailability in the rhizosphere and its distribution in mung bean plant. Environmental Pollution280, 116903. https://doi.org/10.1016/j.envpol.2021.116903

  • Rubinos, D. A., & Spagnoli, G. (2019). Assessment of red mud as sorptive landfill liner for the retention of arsenic (V). Journal of Environmental Management, 232(May 2018), 271–285. https://doi.org/10.1016/j.jenvman.2018.09.041

  • Selvakumar, A., & Rangabhashiyam, S. (2019). Biosorption of Rhodamine B onto novel biosorbents from Kappaphycus alvarezii, Gracilaria salicornia and Gracilaria edulis. Environmental Pollution255, 113291. https://doi.org/10.1016/j.envpol.2019.113291

  • Sharma, G., Sharma, S., Kumar, A., Al-Muhtaseb, A. H., Naushad, M., Ghfar, A. A., et al. (2018). Guar gum and its composites as potential materials for diverse applications: A review. Carbohydrate Polymers, 199(January), 534–545. https://doi.org/10.1016/j.carbpol.2018.07.053

    Article  CAS  Google Scholar 

  • Smitha, S., Rangaswamy, K., Keerthi, D. S. (2019). Triaxial test behaviour of silty sands treated with agar biopolymer. International Journal of Geotechnical Engineering, 1–12. https://doi.org/10.1080/19386362.2019.1679441

  • Sobti, J., & Singh, S. K. (2019). Sorption behaviour of heavy metals in sand-bentonite-coal ash mixes for use as a liner material in landfills. International Journal of Geotechnical Engineering, 13(5), 411–424. https://doi.org/10.1080/19386362.2017.1363346

    Article  CAS  Google Scholar 

  • De Souza, J. V. T. M., Diniz, K. M., Massocatto, C. L., Tarley, C. R. T., Caetano, J., & Dragunski, D. C. (2012). Removal of Pb(II) from aqueous solution with orange sub-products chemically modified as biosorbent. BioResources, 7(2), 2300–2318.

    Article  Google Scholar 

  • Stanila, A., Mihaiescu, T., Socaciu, C., & Diaconeasa, Z. (2016). Removal of copper and lead ions from aqueous solution using brewer yeast as biosorbent. Revista De Chime, 67(7), 1276–1280.

    CAS  Google Scholar 

  • Sujatha, E. R., & Anandha Kumar, S. (2020). Biopolymer-based liners for waste containment facilities: A review. Handbook of Solid Waste Management: Sustainability through Circular Economy, 1–17.

  • Sujatha, E. R., & Saisree, S. (2019). Geotechnical behaviour of guar gum-treated soil. Soils and Foundations, 59(6), 2155–2166. https://doi.org/10.1016/j.sandf.2019.11.012

    Article  Google Scholar 

  • Sujatha, E. R., Sivaraman, S., & Subramani, A. K. (2020). Impact of hydration and gelling properties of guar gum on the mechanism of soil modification. Arabian Journal of Geosciences, 13(23). https://doi.org/10.1007/s12517-020-06258-x

  • Tauqeer, H. M., Karczewska, A., Lewińska, K., Fatima, M., Khan, S. A., Farhad, M., & Iqbal, M. (2021). Environmental concerns associated with explosives (HMX, TNT, and RDX), heavy metals and metalloids from shooting range soils: Prevailing issues, leading management practices, and future perspectives. In Handbook of Bioremediation (pp. 569-590). Academic Press. https://doi.org/10.1016/b978-0-12-819382-2.00036-3

  • Torab-Mostaedi, M., Ghassabzadeh, H., Ghannadi-Maragheh, M., Ahmadi, S. J., & Taheri, H. (2010). Removal of cadmium and nickel from aqueous solution using expanded perlite. Brazilian Journal of Chemical Engineering, 27(02), 299–308.

    Article  CAS  Google Scholar 

  • Tripathy, B. K., Ramesh, G., Debnath, A., & Kumar, M. (2019). Mature landfill leachate treatment using sonolytic-persulfate/hydrogen peroxide oxidation: Optimization of process parameters. Ultrasonics Sonochemistry, 54, 210–219. https://doi.org/10.1016/j.ultsonch.2019.01.036

    Article  CAS  Google Scholar 

  • Turan, V. (2019). Confident performance of chitosan and pistachio shell biochar on reducing Ni bioavailability in soil and plant plus improved the soil enzymatic activities, antioxidant defense system and nutritional quality of lettuce. Ecotoxicology and Environmental Safety, 183(August), 109594. https://doi.org/10.1016/j.ecoenv.2019.109594

    Article  CAS  Google Scholar 

  • Turan, V. (2020). Potential of pistachio shell biochar and dicalcium phosphate combination to reduce Pb speciation in spinach, improved soil enzymatic activities, plant nutritional quality, and antioxidant defense system. Chemosphere245, 125611. https://doi.org/10.1016/j.chemosphere.2019.125611

  • Turan, V., Khan, S. A., Mahmood-ur-Rahman, Iqbal, M., Ramzani, P. M. A., & Fatima, M. (2018a). Promoting the productivity and quality of brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan. Ecotoxicology and Environmental Safety, 161(October 2017), 409–419. https://doi.org/10.1016/j.ecoenv.2018.05.082

  • Turan, V., Ramzani, P. M. A., Ali, Q., Abbas, F., Iqbal, M., Irum, A., Khan, W., & ud D. (2018b). Alleviation of nickel toxicity and an improvement in zinc bioavailability in sunflower seed with chitosan and biochar application in pH adjusted nickel contaminated soil. Archives of Agronomy and Soil Science, 64(8), 1053–1067. https://doi.org/10.1080/03650340.2017.1410542

    Article  CAS  Google Scholar 

  • Uddin, M. K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308, 438–462. https://doi.org/10.1016/j.cej.2016.09.029

    Article  CAS  Google Scholar 

  • Uma Shankar, M., & Phanikumar, B. R. (2012). Correlation studies on index properties of fly ash- stabilised expansive clay liners. Geomechanics and Geoengineering, 7(4), 283–291. https://doi.org/10.1080/17486025.2011.631036

    Article  Google Scholar 

  • Varadarajan, R., Venkatesan, G., & Swaminathan, G. (2016). Removal of copper using clay admixed with quarry fines as landfill liners. Polish Journal of Environmental Studies, 25(1), 377–384. https://doi.org/10.15244/pjoes/59500

  • Vaverková, M. D., Adamcová, D., Radziemska, M., Voběrková, S., Mazur, Z., & Zloch, J. (2018). Assessment and evaluation of heavy metals removal from landfill leachate by Pleurotus ostreatus. Waste and Biomass Valorization, 9(3), 503–511. https://doi.org/10.1007/s12649-017-0015-x

    Article  CAS  Google Scholar 

  • Yadav, D., Rangabhashiyam, S., Verma, P., Singh, P., Devi, P., Kumar, P., & Kumar, K. S. (2021). Environmental and health impacts of contaminants of emerging concerns: recent treatment challenges and approaches. Chemosphere, 129492. https://doi.org/10.1016/j.scitotenv.2019.135907

  • Yamusa, Y. B., Alias, N., Ahmad, K., & Sa’Ari, R., Osinubi, K. J., Adrian, E. O., & Moses, G. (2020). Engineering characteristics of compacted laterite soil as hydraulic barrier in waste containment application. Journal of Engineering Science and Technology, 15(1), 508–523.

    Google Scholar 

  • Yin, Y., Yin, H., Wu, Z., Qi, C., Tian, H., Zhang, W., & Hu, Z. (2019). Characterization of coals and coal ashes with high Si content using combined second-derivative infrared spectroscopy and Raman spectroscopy. Crystals, 9(10), 513.

    Article  CAS  Google Scholar 

  • Yusuff, A. S., & Adesina, O. A. (2019). Characterization and adsorption behaviour of anthill for the removal of anionic dye from aqueous solution. International Journal of Environmental Science and Technology, 16(7), 3419–3428. https://doi.org/10.1007/s13762-018-1981-7

    Article  CAS  Google Scholar 

  • Zhang, L., Zeng, Y., & Cheng, Z. (2016). Removal of heavy metal ions using chitosan and modified chitosan: A review. Journal of Molecular Liquids, 214, 175–191. https://doi.org/10.1016/j.molliq.2015.12.013

    Article  CAS  Google Scholar 

  • Zubair, M., Adnan Ramzani, P. M., Rasool, B., Khan, M. A., ur-Rahman, M., Akhtar, I., et al. (2021). Efficacy of chitosan-coated textile waste biochar applied to Cd-polluted soil for reducing Cd mobility in soil and its distribution in moringa (Moringa oleifera L.). Journal of Environmental Management, 284(January). https://doi.org/10.1016/j.jenvman.2021.112047

Download references

Acknowledgements

This work was supported by the TRR fund [TRR18] from the SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India. The authors thank the Vice-Chancellor of SASTRA for the support and infrastructure provided during the period of the study.

Funding

This work was supported by the TRR fund [TRR18] from the SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujatha Evangelin Ramani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramani, A.K., Ramani, S.E. & Selvasembian, R. Understanding the microstructure, mineralogical and adsorption characteristics of guar gum blended soil as a liner material. Environ Monit Assess 193, 855 (2021). https://doi.org/10.1007/s10661-021-09644-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09644-4

Keywords

Navigation