Skip to main content

Advertisement

Log in

An improved MOPSO algorithm for multi-objective optimization of reservoir operation under climate change

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Gradually, the previously proposed water resource management schemes and reservoir operating policies adjusted to the historically experienced climatic conditions are losing their validity and efficacy, urging building up the models compatible with the likely climatic change conditions at the future. This paper aims at optimizing the reservoir operation under climate change conditions targeting the objectives including (1) minimizing the shortages in meeting the reservoir downstream water demands and (2) maximizing the sustainability of the reservoir storage. For evaluating the effects of the climate change, six general circulation models (GCMs) built up under the representative concentration pathway (RCP4.5) emission scenario are adopted and utilized to predict the climate variables over a 30-year planning period. To solve this problem, an improved version of our recently proposed fuzzy multi-objective particle swarm optimization (f-MOPSO) algorithm, named f-MOPSO-II, is proposed. The f-MOPSO takes a novel approach to handle multi-objective nature of the optimization problems. In this approach, the common concept of “diversity” is replaced with “extremity,” to choose the better guides of the search agents in the algorithm. The f-MOPSO-II is based on the f-MOPSO. However, it is aimed at simultaneously mitigating the f-MOPSO computational complexity and enhancing the quality of the final results presented by this algorithm. The results obtained by the f-MOPSO-II were then compared with those yielded by the popular non-dominated sorting genetic algorithm-II (NSGA-II). As the results suggest, the f-MOPSO-II is capable of simultaneously meeting the water demands and holding the reservoir storage sustainable, much better than the NSGA-II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data used in this paper are available from the corresponding author by request.

References

  • Akurut, M., Willems, P., & Niwagaba, C. B. (2014). Potential impacts of climate change on precipitation over Lake Victoria, East Africa, in the 21st Century. Water, 6(9), 2634–2659.

    Article  Google Scholar 

  • Al-Jawad, J. Y., & Tanyimboh, T. T. (2017). Reservoir operation using a robust evolutionary optimization algorithm. Journal of Environmental Management, 197, 275–286.

    Article  Google Scholar 

  • Anandhi, A., Frei, A., Pierson, D. C., Schneiderman, E. M., Zion, M. S., Lounsbury, D., & Matonse, A. H. (2011). Examination of change factor methodologies for climate change impact assessment. Water Resources Research. https://doi.org/10.1029/2010WR009104

    Article  Google Scholar 

  • Anderson, M. G., & Burt, T. P. (1985). Hydrological forecasting.

  • Azmat, M., Qamar, M. U., Huggel, C., & Hussain, E. (2018). Future climate and cryosphere impacts on the hydrology of a scarcely gauged catchment on the Jhelum river basin, Northern Pakistan. Science of the Total Environment, 639, 961–976.

    Article  CAS  Google Scholar 

  • Bozorg-Haddad, O., Aboutalebi, M., Ashofteh, P.-S., & Loáiciga, H. A. (2018). Real-time reservoir operation using data mining techniques. Environmental Monitoring and Assessment, 190, 594.

    Article  Google Scholar 

  • Bozorg-Haddad, O., Solgi, M., & Loáiciga, H. A. (2017). Meta-heuristic and Evolutionary Algorithms for Engineering Optimization. Hoboken, USA, John Wiley & Sons, Inc.

  • Chang, J. X., Bai, T., Huang, Q., & Yang, D. W. (2013). Optimization of water resources utilization by PSO-GA. Water Resources Management, 27(10), 3525–3540.

    Article  Google Scholar 

  • Coello, C. A., & Lechuga, M. S. (2002). MOPSO: A proposal for multiple objective particle swarm optimization. In: Proc. IEEE Congress on Evolutionary Computation (CEC’2002), May. IEEE Service Center. Piscataway, NJ, 2, 1677–1681.

  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  • Dingman, S. L., Seely-Reynolds, D. M., & Reynolds, R. C., III. (1988). Application of kriging to estimating mean annual precipitation in a region of orographic influence 1. JAWRA Journal of the American Water Resources Association, 24(2), 329–339.

    Article  Google Scholar 

  • Fallah-Mehdipour, E., Bozorg-Haddad, O., & Mariño, M. A. (2011). MOPSO algorithm and its application in multipurpose multireservoir operations. Journal of Hydroinformatics, 13(4), 794–811.

    Article  Google Scholar 

  • Fang, R., & Popole, Z. (2020). Multi-objective optimized scheduling model for hydropower reservoir based on improved particle swarm optimization algorithm. Environmental Science and Pollution Research, 27(12), 12842–12850.

  • Gohari, A., Eslamian, S., Abedi-Koupaei, J., Bavani, A. M., Wang, D., & Madani, K. (2013). Climate change impacts on crop production in Iran’s Zayandeh-Rud River Basin. Science of the Total Environment, 442, 405–419.

    Article  CAS  Google Scholar 

  • Guo, X., Hu, T., Wu, C., Zhang, T., & Lv, Y. (2013). Multi-objective optimization of the proposed multi-reservoir operating policy using improved NSPSO. Water Resources Management, 27, 2137–2153.

    Article  Google Scholar 

  • Guo, S., Wang, J., Xiong, L., Ying, A., & Li, D. (2002). A macro-scale and semi-distributed monthly water balance model to predict climate change impacts in China. Journal of Hydrology, 268(1–4), 1–15.

    Article  Google Scholar 

  • Jahandideh-Tehrani, M., Bozorg-Haddad, O., & Loáiciga, H. A. (2020). Application of particle swarm optimization to water management: An introduction and overview. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-020-8228-z

    Article  Google Scholar 

  • Karimi, N., Zandieh, M., & Karamooz, H. R. (2010). Bi-objective group scheduling in hybrid flexible flowshop: A multi-phase approach. Expert Systems with Applications, 37, 4024–4032.

    Article  Google Scholar 

  • Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization, Proceedings of IEEE International Conference on Neural Networks.

  • Kumar, D. N., & Reddy, M. J. (2007). Multipurpose reservoir operation using particle swarm optimization. Journal of Water Resources Planning and Management, 133(3), 192–201.

    Article  Google Scholar 

  • Li, T., & Tang, W. (2012). An improved adaptive particle swarm optimization algorithm. Information Engineering and Applications, 331–338.

  • Liang, J. J., Qin, A. K., Suganthan, P. N., & Baskar, S. (2006). Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 10(3), 281–295.

    Article  Google Scholar 

  • Liu, Y. (2009). Automatic calibration of a rainfall-runoff model using a fast and elitist multi-objective particle swarm algorithm. Experts Syst Appl, 36, 9533–9538.

    Article  Google Scholar 

  • Liu, B., Wang, L., Jin, Y., Tang, F., & Huang, D. (2005). Improved particle swarm optimization combined with chaos. Chaos, Solitons & Fractals, 25, 1261–1271.

    Article  Google Scholar 

  • Mason, S. J. (2004). Simulating climate over western North America using stochastic weather generators. Climatic Change, 62(1–3), 155–187.

    Article  Google Scholar 

  • Mirfenderesgi, G., & Mousavi, S. J. (2016). Adaptive metamodeling-based simulation optimization in basin-scale optimum water allocation: A comparative analysis of metamodels. Journal of Hydroinformatics, 18(4). https://doi.org/10.2166/hydro.2015.157

  • Muttiah, R. S., & Wurbs, R. A. (2002). Modeling the impacts of climate change on water supply reliabilities. Water International, 27(3), 407–419.

    Article  Google Scholar 

  • Neboh, N., Adeyemo, J., Enitan, A., & Olugbara, O. (2015). A review on applications of evolutionary algorithms to reservoir operation for hydropower production. International Journal of Geological and Environmental Engineering, 9(9). https://doi.org/10.5281/zenodo.1109762

  • Nguyen, P., Thorstensen, A., Sorooshian, S., Zhu, Q., Tran, H., Ashouri, H., Miao, C., Hsu, K., & Gao, X. (2017). Evaluation of CMIP5 model precipitation using PERSIANN-CDR. Journal of Hydrometeorology, 18(9), 2313–2330.

    Article  Google Scholar 

  • Niu, W.-J., Feng, Z.-K., Cheng, C.-T., & Wu, X.-Y. (2018). A parallel multi-objective particle swarm optimization for cascadehydropower reservoir operation in southwest China. Applied Soft Computing, 70, 562–575.

    Article  Google Scholar 

  • Ostadrahimi, L., Mariño, M. A., & Afshar, A. (2012). Multireservoir operation rules: Multi-swarm PSO-based optimization approach. Water Resources Management, 26(2), 407–427.

    Article  Google Scholar 

  • Parsopoulos, K. E., Plagianakos, V. P., Magoulas, G. D., & Vrahatis, M. N. (2001). Stretching technique for obtaining global minimizers through particle swarm optimization. Proceedings of the Particle Swarm Optimization workshop, 22–29.

  • Pichuka, S., Prasad, R., Maity, R., & Kunstmann, H. (2017). Development of a method to identify change in the pattern of extreme streamflow events in future climate: Application on the Bhadra reservoir inflow in India. Journal of Hydrology: Regional Studies, 9, 236–246.

    Google Scholar 

  • Reddy, M. J., & Kumar, D. N. (2007). Multi-objective particle swarm optimization for generating optimal trade-offs in reservoir operation. Hydrological Processes, 21(21), 2897–2909.

    Article  Google Scholar 

  • Rezaei, F., Safavi, H. R., Mirchi, A., & Madani, K. (2017a). f-MOPSO: An alternative multi-objective PSO algorithm for conjunctive water use management. Journal of Hydro-Environment Research, 14, 1–18.

    Article  Google Scholar 

  • Rezaei, F., Safavi, H. R., & Zekri, M. (2017b). A hybrid fuzzy-based multi-objective PSO algorithm for conjunctive water use and optimal multi-crop pattern planning. Water Resources Management, 31(4), 1139–1155.

    Article  Google Scholar 

  • Robinson, J., Sinton, S., & Rahmat-Samii, Y. (2002). Particle swarm, genetic algorithm, and their hybrids: Optimization of a profiled corrugated horn antenna. Antennas and Propagation Society International Symposium, IEEE, San Antonio, TX, 1, 314–317.

    Article  Google Scholar 

  • Schott, J. R. (1995). Fault tolerant design using single and multicriteria genetic algorithm optimization (No. AFIT/CI/CIA-95–039). Air Force Inst of Tech Wright-Patterson AFB OH.

  • Sepahvand, R., Safavi, H. R., & Rezaei, F. (2019). Multi-objective planning for conjunctive use of surface and ground water resources using genetic programming. Water Resources Management, 33(6), 2123–2137.

    Article  Google Scholar 

  • Sierra, M. R., & Coello, C. A. C. (2005). Improving PSO-based multi-objective optimization using crowding, mutation and ε-dominance. In Proceedings of Evolutionary Multi-Criterion Optimization.

  • Silberstein, R. P., Aryal, S. K., Durrant, J., Pearcey, M., Braccia, M., Charles, S. P., Boniecka, L., Hodgson, G. A., Bari, M. A., Viney, N. R., & McFarlane, D. J. (2012). Climate change and runoff in south-western Australia. Journal of Hydrology, 475, 441–455.

    Article  Google Scholar 

  • Solgi, M., Bozorg-Haddad, O., & Loáiciga, H. A. (2016). The enhanced honey-bee mating optimization algorithm for water resources optimization. Water Resources Management. https://doi.org/10.1007/s11269-016-1553-x

    Article  Google Scholar 

  • Sun, J., Feng, B., & Xu,W. (2004). “Particle swarm optimization with particles having quantum behavior”, IEEE Proc. Of Congress on Evolutionary Computation, June.

  • Tao, F., & Zhang, Z. (2010). Adaptation of maize production to climate change in North China Plain: Quantify the relative contributions of adaptation options. European Journal of Agronomy, 33(2), 103–116.

    Article  Google Scholar 

  • Trivedi, M., & Shrivastava, R. (2020). Derivation and performance evaluation of optimal operating policies for a reservoir using a novel PSO with elitism and variational parameters. Urban Water Journal. https://doi.org/10.1080/1573062X.2020.1823431

    Article  Google Scholar 

  • Wang, Q., Zhou, H., Liang, G., & Xu, H. (2015). Optimal operation of bidirectional inter-basin water transfer-supply system. Water Resources Management, 29(9), 3037–3054.

    Article  Google Scholar 

  • Wu, J., Long, J., & Miu, M. (2015). Evolving RBF neural networks for rainfall prediction using hybrid particle swarm optimization and genetic algorithm. Neurocomputing, 148, 136–142.

    Article  Google Scholar 

  • Yang, Z., Yang, K., Wang, Y., Su, L., & Hu, H. (2020). Multi-objective short-term hydropower generation operation for cascade reservoirs and stochastic decision making under multiple uncertainties. Journal of Cleaner Production, 276. https://doi.org/10.1016/j.jclepro.2020.122995

  • Zhang, Z., Jiang, Y., Zhang, S., Geng, S., Wang, H., & Sang, G. (2014). An adaptive particle swarm optimization algorithm for reservoir operation optimization. Applied Soft Computing, 18, 167–177.

    Article  Google Scholar 

  • Zhang, H., Wang, B., Liu, D. L., Zhang, M., Feng, P., Cheng, L., Yu, Q., & Eamus, D. (2019). Impacts of future climate change on water resource availability of eastern Australia: A case study of the Manning River basin. Journal of Hydrology, 573, 49–59.

    Article  Google Scholar 

  • Zhang, X., Yu, X., & Qin, H. (2016). Optimal operation of multireservoir hydropower systems using enhanced comprehensive learning particle swarm optimization. Journal of Hydro- Environment Research, 10, 50–63.

    Article  Google Scholar 

  • Zhao, T., & Zhao, J. (2014). Improved multiple-objective dynamic programming model for reservoir operation optimization. Journal of Hydroinformatics, 16(5), 1142–1157.

    Article  Google Scholar 

  • Zheng, Y., Huang, Y., Zhou, S., Wang, K., & Wang, G. (2018). Effect partition of climate and catchment changes on runoff variation at the headwater region of the Yellow River based on the Budyko complementary relationship. Science of the Total Environment, 643, 1166–1177.

    Article  CAS  Google Scholar 

  • Zhong, D., Dong, Z., Zhao, Y., Xu, W., & Guan, X. (2017). Cascade reservoir optimal operation based on chaotic particle swarm optimization. Advances in Computer Science Research, 62. https://doi.org/10.2991/jimec-17.2017.95

  • Zhou, A., Zhao, S., Suganthan, P. N., Liu, W., & Tiwari, S. (2009). Multiobjective optimization test instances for the CEC 2009 special session and competition. In Proceedings of University of Essex, Colchester, UK and Nanyang Technological University, Singapore, Special Session on Performance Assessment of Multi-Objective Optimization Algorithms, Technical Report (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid R. Safavi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansouri, M., Safavi, H.R. & Rezaei, F. An improved MOPSO algorithm for multi-objective optimization of reservoir operation under climate change. Environ Monit Assess 194, 261 (2022). https://doi.org/10.1007/s10661-022-09909-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-09909-6

Keywords

Navigation