Skip to main content

Advertisement

Log in

MCA on mechanism of river bed potholes growth: a study of middle Subarnarekha River basin, South East Asia

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Pothole is an exceptional dynamic micro-fluvial erosional landform of the river bed. Subarnarekha River is a rejuvenated antecedent river and occupies a significant part of the Chotanagpur Plateau. The river bed of the Subarnarekha River and the confluence zones of Subarnarekha-Lokjoriya and Subarnarekha-Kharsoti have favourable conditions for the development of potholes. Geological (joint and fracture on river bed) and hydrological (stream power, water discharge, flow velocity) parameters are taken into consideration to understand the mechanism of pothole growth. Multi-criteria analysis (MCA) has been done to understand the governing factor influencing the mechanism of pothole development. The results are analysed in a quantitative way, and the micro-scale field observations have been represented using ArcGIS10.2.2 and IBM SPSS 22. Using the MCA it has been inferred that ‘joint length’ is the prime contributing factor responsible for pothole formation in the middle Subarnarekha River basin, Ghatsila. The main significance of this research work is the study of micro-geomorphic landforms mechanism near confluence and other places of the river bed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ahmad, E., & Debi, P. (1965). Origin of Chotanagpur scarps. Geography Outlook, Vol. 4, Ranchi.

  • Alexander, H. S. (1932). Pothole erosion. Journal of Geology, 40, 305–337.

    Article  Google Scholar 

  • Ayaz, S., Biswas, M., & Dhali, M. K. (2017). Morphotectonic analysis of alluvial fan dynamics: comparative study in spatio-temporal scale of Himalayan foothill, India. Arabian Journal of Geoscience. https://doi.org/10.1007/s12517-017-3308-2.

    Article  Google Scholar 

  • Barbour, J. R., Stark, C. P., Lin, W. C., Chen, H., Horng, J. M., Ko, C. P., et al. (2009). Magnitude–frequency distributions of boundary shear stress along a rapidly eroding bedrock river. Geographical Research Letters, 36(L04401), 1–5. https://doi.org/10.1029/2008GL035786.

    Article  Google Scholar 

  • Best, J. L. (1986). The morphology of river channel confluences. Progress in Physical Geography, 10(2), 157–174.

    Article  Google Scholar 

  • Best, J. L. (1988). Sediment transport and bed morphology at river channel confluences. Sedimentology, 35, 481–498. https://doi.org/10.1111/j.1365-3091.

    Article  Google Scholar 

  • Biron, P., Best, J. L., & Roy, A. G. (1996). Effects of bed discordance on flow dynamics at open channel confluences. Journal of Hydraulic Engineering, 122(12), 676–682.

    Article  Google Scholar 

  • Buffington, M. J., & Tonina, D. (2003). Hyporheic exchange in mountain rivers II: Effects of channel morphology on mechanics, scales, and rates of exchange. Geography Compass, 3(3), 1038–1062. https://doi.org/10.1111/j.1749-8198.2009.00225.x.

    Article  Google Scholar 

  • Coelho, M. M. L. P. (2003). Comportamentohidráulicoemconfluências de canais: Uma abordagemconceitual e experimental (p. 283). São Paulo: Universidade de São Paulo.

    Google Scholar 

  • Dhali, K. M (2015). Dynamic changes of bar formation of Teesta River based on GIS application, 2015. International Research Journal of Applied and Natural Science, 2(9). ISSN 2349-4077.

  • Dhali, M. K., & Biswas, M. (2017). Geo-hydrological response to pothole formation: a quantitative study of Kharsoti River, India. Modeling Earth Systems and Environment, 3, 32. https://doi.org/10.1007/s40808-017-0280-5.

    Article  Google Scholar 

  • Dhali, K., & Sahana, M. (2017). Spatial variation in fluvial hydraulics with major bed erosion zone: A study of Kharsoti river of India in the post monsoon period. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-017-3205-8.

    Article  Google Scholar 

  • Dietrich, E. W, Bellugi, G. D., Sklar, S. L., Stock, D. J., Heimsath M. A., & Roering, J. J. (1992). Geomorphic transport laws for predicting landscape form and dynamics, prediction in geomorphology. Geophysical Monograph 135, The American Geophysical Union, 1–30.

  • Dunn, J. A. (1939). The geology of north Singhbhum including parts of Ranchi and Manbhum districts. Memoirs of the Geological Survey of India, 54, 132.

    Google Scholar 

  • Elston, E. D. (1917). Potholes: Their variety, origin and significance. The Scientific Monthly, 5, 554–567.

    Google Scholar 

  • Gilbert, G. K. (1877). Report on the geology of the Henry Mountains: Geographical and geological survey of the Rocky Mountain region (p. 106). Washington, D.C.: Government Publishing Office.

    Google Scholar 

  • Hancock, S. G., & Anderson, S. R. (2010). Numerical modelling of fluvial strath-terrace formation in response to oscillating climate. GSA Bulletin, 114(9), 1131–1142.

    Google Scholar 

  • Hartshorn, K., Hovius, N., Dade, W. B., & Slingerland, R. L. (2002). Climate-driven bedrock incision in an active mountain belt. Science, 297, 2036–2038. https://doi.org/10.1126/science.1075078.

    Article  CAS  Google Scholar 

  • Hartvich, F., & Vilimke, V. (2008). Selected landforms and their significance in the analysis of the slope origin the Losenice river valley, Sumava Mts. Acta Geodynamics et Geomaterialia, 5(151), 275–296.

    Google Scholar 

  • Horten, E. R. (1945). Erosional development of streams and their drainage basins; hydro physical approach to quantitative morphology. Bulletin of the Geological Society of America, 56, 275–370.

    Article  Google Scholar 

  • Hsu, C. C., Lee, W.-J., & Chang, C.-H. (1998). Subcritical open channel junction flow. Journal of Hydraulic Engineering, 124(8), 847–855.

    Article  Google Scholar 

  • Jonson, J. P., et al. (2007). Feedbacks between erosion and sediment transport in experimental bedrock channel. Earth Surface Process and Landforms, 32, 1048–1062.

    Article  Google Scholar 

  • Kale, V. S. (2005). Fluvial hydrology and geomorphology of monsoon-dominated Indian rivers. RevistaBrasileira de Geomorfologia, 6(1), 63–73.

    Google Scholar 

  • Kale, V. S., & Joshi, V. (2004). Evidence of formation of potholes in bedrock on human timescale: Indrayani river, Pune district, Maharashtra. Current Science, 86, 773–775.

    Google Scholar 

  • Konidari, P., & Mavrakis, D. (2007). A multi-criteria evaluation method for climate change mitigation policy instruments. Energy Policy, 35(12), 6235–6257.

    Article  Google Scholar 

  • Leite Ribeiro, M., Blanckaert, K., Roy, A. G., & Schleiss, A. J. (2012). Hydromorphological implications of local tributary widening for river rehabilitation. Water Resources Research, 48(10). https://doi.org/10.1029/2011WR011296.

  • Leopold, B. L. (1953). Downstream change of velocity in rivers. American Journal of Science, 251, 606–624.

    Article  Google Scholar 

  • Leopold, L. B., & Maddock, T. (1953). The hydraulic geometry of stream channels and some physiographic implications: U. S. Geological Survey. Prof. paper, 262.

  • Lima, A. G., & Binda, A. L. (2015). Differential control in the formation of river potholes on basalts of the Paraná Volcanic Province. Journal of South American Earth Sciences, 59, 86–94.

    Article  Google Scholar 

  • Molnar, P. (2004). Late Cenozoic increase in accumulation rates of territorial sediment: How might climate change have affected erosion rates? 4 November 2003 15:30 AR AR211-EA32-04.tex AR211-EA32-04.sgm LaTeX2e (2002/01/18) P1: GCE AR Reviews in Advance (pp. 67–89). https://doi.org/10.1146/annurev.earth.32.091003.143456.

  • Molnar, P., Anderson, S. R., & Anderon, P. S. (2007). Tectonics, fracturing of rock, and erosion. Journal of Geographical Research, 112, F03014. https://doi.org/10.1029/2005jf000433.

    Article  Google Scholar 

  • Mukhopadhyay, S. C. (1980). Geomorphology of the Subarnarekha basin, The Chotonagpur Plateau, The University of Burdwan (pp. 55–144). W.B, India.

  • Ortega, J. A., Gómez-Heras, M., Perez-López, R., & Wohl, E. (2014). Multiscale structural and lithologic controls in the development of stream potholes on granite bedrock rivers. Geomorphology, 204, 588–598. https://doi.org/10.1016/j.geomorph.2013.09.005

    Article  Google Scholar 

  • Paul, J. (2014). Deformation pattern as indicator of structural evolution: Ghatsila-Galudih-Tentuldanga fold belt, Tentuldanga, Jharkhand, Eastern India, Earth Science India. www.earthscienceindia.info. Popular Issue, VII (IV), October, 2014, pp. 1–8.

  • Pelletier, D. J., Sweeney, E. K., RoeringJ, J., & Finnegan, J. N. (2014). Controls on the geometry of potholes in bedrock channels. American Geophysical Union Geophysical Research Letters, 1–7, 2014.

    Google Scholar 

  • Prato, T. (2003). Multiple-attribute evaluation of ecosystem management for the Missouri River system. Ecological Economics, 45(2003), 297–309.

    Article  Google Scholar 

  • Ramamurthy, A. S., Carballada, L. B., & Tran, D. M. (1988). Combining open channel flow at right angled junctions. Journal of Hydraulic Engineering, 114, 1449–14604.

    Article  Google Scholar 

  • Reid, I. (1984). Separation zone at open-channel junctions. Journal of Hydraulic Engineering, 110(11), 1588–1594.

    Article  Google Scholar 

  • Rhoads, B. L., & Kenworthy, S. T. (1995). Flow structure at an asymmetrical stream confluence. Geomorphology, 11, 273–293. https://doi.org/10.1016/0169-555X(94)00069-4.

    Article  Google Scholar 

  • Ribeiro M. L., et al. (2014b). Morphodynamic changes in a natural river confluence due to a hydropower modified flow regime. In Schleiss, Speerli & Pfammatter (Eds.), Swiss competences in river engineering and restoration (pp. 191–199).

  • Ribeiro, L. M., Wampfler, S., & Schleiss, A. (2014a). Morphodynamic changes in a natural river confluence due to a hydropower modified flow regime. In Schleiss, Speerli & Pfammatter (Eds.), Swiss competences in river engineering and restoration (pp. 191–199). London: Taylor & Francis Group. ISBN 978-1-138-02676-6.

  • Rice, S. P., Kiffney, P., Greene, C., & Pess, G. R. (2008). The ecological importance of tributaries and confluences (pp. 209–242). Hoboken: Wiley.

    Google Scholar 

  • Scott D. (2015). An examination of the effects of joint geometry on the inferred erosion rate of bedrock channels in the Austrian Alps. Australian Marshall plan scholarship papers.

  • Sengupta, S., & Kale, V. S. (2011). Evaluation of the role of rock properties in the development of potholes: A case study of the Indrayaniknickpoint, Maharashtra. Journal of Earth System Science, 120(1), 157–165.

    Article  Google Scholar 

  • Singh, R. P. (1956). Geomorphological evolution of Chotanagpur Highlands—India. National Geographical Society of India, Varanasi.

  • Springer, G. S., & Wohl, E. E. (2002). Empirical and theoretical studies of Sculpted forms in Buckeye Creek Cave, West Virginia. Journal of Geology, 110, 469–481.

    Article  Google Scholar 

  • Stock, J. D., & Montgomery, D. R. (1999). Geologic constraints on bedrock river incision using the stream power low. Journal of Geographical Research, 104, 4983–4993.

    Google Scholar 

  • Walker, W., Harremoës, P., Rotmans, J., Van der Sluijs, J., Van Asselt, M. B. A., Jansen, P., et al. (2003). Defining uncertainty: A conceptual basis for uncertainty management in model-based decision support. Journal of Integrated Assessment, 4(1), 5–17.

    Article  Google Scholar 

  • Wang, W., Liang, M., & Huang, S. (2009). Formation and development of stream potholes in a gorge in Guangdong. Journal of Geographical Sciences, 19, 118–128. https://doi.org/10.1007/s11442-009-0118-9.

    Article  Google Scholar 

  • Whipple, K. X., Hancock, G. S., & Anderson, R. S. (2000). River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion, and cavitation. Geological Society of America Bulletin, 112:490–503. https://doi.org/10.1130/0016-7606(2000)1122.3.CO;2.

    Article  Google Scholar 

  • Wohl, E., Kuzma, J. N., & Brown, N. E. (2004). Reach-scale channel geometry of a mountain river. Earth Surface Processes and Landforms, 29(8), 969–981. https://doi.org/10.1002/esp.1078

    Article  Google Scholar 

Download references

Acknowledgements

The corresponding author also acknowledges UGC (University Grand Commission), India, for the economic support as Junior Research Fellowship. We are also thankful to the Editor-in-Chief, Luc Hens of ‘Environment, Development and Sustainability’, and the anonymous reviewers for their valuable comments to substantial improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Kutubuddin Dhali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhali, M.K., Biswas, M. MCA on mechanism of river bed potholes growth: a study of middle Subarnarekha River basin, South East Asia. Environ Dev Sustain 21, 935–959 (2019). https://doi.org/10.1007/s10668-017-0069-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-017-0069-8

Keywords

Navigation