Skip to main content
Log in

Self-compacting mortar with sugarcane bagasse ash: development of a sustainable alternative for Brazilian civil construction

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The technically controlled use of industrial residues in replacement of natural resources for the production of new products with comparable quality presents a great economic and sustainable contribution. In this sense, this work sought to develop self-compacting mortars with partial replacement of sand by sugarcane bagasse ash (SCBA) by a rheological study of the optimum dosage of superplasticizer to cement ratio. The self-compacting parameters were obtained by analyzing the relative flow area and relative flow time, adapting from mortar flow tests. Besides one sample composed only of sand as fine aggregate, the self-compacting mortars presented replacement rates of sand by sugarcane bagasse ash, in mass of 5, 10, 20, 25, 30 and 40%. The results demonstrated that it was possible to reduce up to 489 and 56 kg of sand and cement, respectively, to produce 1 m3 of self-compacting mortar with sugarcane bagasse ash considering the expressive replacement rate of 40% of sand by SCBA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Associação Brasileira de Normas Técnicas - ABNT. (2009). NBR 7211. Agregados para concreto - Especificação (aggregates for concrete—specification). Rio de Janeiro, Brazil.

  • Associação Brasileira de Normas Técnicas - ABNT. (2009). NBR 15900-1. Água para amassamento do concreto – requisitos (mixing water for concrete part 1: requirements). Rio de Janeiro, Brazil.

  • Associação Brasileira de Normas Técnicas – ABNT. (2004). NBR 10004. Resíduos Sólidos – classificação (solid waste—classification). Rio de Janeiro, Brazil.

  • Associação Brasileira de Normas Técnicas – ABNT. (2014). NBR 5752. Materiais pozolânicos — Determinação do índice de desempenho com cimento Portland aos 28 dias (pozzolanic materials—determination of the performance index with Portland cement at 28 days). Rio de Janeiro, Brazil.

  • Associação Brasileira de Normas Técnicas – ABNT. (2016). NBR 7181. Solo - Análise granulométrica (soil—grain size analysis). Rio de Janeiro, Brazil.

  • Associação Brasileira de Normas Técnicas – ABNT. (2017). NBR 15823-1: Concreto auto-adensável. Parte 1: Classificação, controle e aceitação no estado fresco (self compacting concrete. part 1: Classification, control and acceptance in the fresh state). Rio de Janeiro, Brazil.

  • Bahurudeen, A., & Santhanam, M. (2015). Influence of different processing methods on the pozzolanic performance of sugarcane bagasse ash. Cement & Concrete Composites. https://doi.org/10.1016/j.cemconcomp.2014.11.002.

    Article  Google Scholar 

  • Chatterjee, A., & Das, D. (2013). Assessing flow response of self-compacting mortar by Taguchi method and ANOVA interaction. Materials Research. https://doi.org/10.1590/S1516-14392013005000083.

    Article  Google Scholar 

  • Companhia Nacional de Abastecimento - CONAB. (2017). Acompanhamento da safra brasileira: cana-de-açúcar. Segundo levantamento da safra 2017/2018, agosto. http://www.conab.gov.br/OlalaCMS/uploads/arquivos/17_08_24_08_59_54_boletim_cana_portugues_-_2o_lev_-_17-18.pdf. Accessed 20 Sept 2017.

  • Crespi, M., Martins, Q., Almeida, S., Barud, H., Kobelnik, M., & Ribeiro, C. (2011). Characterization and thermal behavior of residues from industrial sugarcane processing. Journal of Thermal Analysis and Calorimetry. https://doi.org/10.1007/s10973-011-1397-9.

    Article  Google Scholar 

  • Edamatsu, Y., Nishida, N., Ouchi, M. A. (1999). Rational mix-design method for self compacting concrete considering interaction between coarse aggregate and mortar particles. In Å. Skarendahl & Ö. Petersson (Eds.), Proceedings of the first international RILEM symposium on self-compacting concrete; September 13–14, 1999; Stockholm, Sweden. Stockholm: A. RILEM Publications S.A.R.L. pp. 309–320.

  • European Federation which Unites National Associations and Companies – EFNARC. (2005). The Europe guidelines for self-compacting. concrete—specification, production and use. http://www.EFNARC.org/pdf/SCCGuidelinesMay2005.pdf. Accessed 23 Sept 2017.

  • Faria, K. C. P., Gurgel, R. F., & Holanda, J. N. F. (2012). Recycling of sugarcane bagasse ash waste in the production of clay bricks. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2012.01.032.

    Article  Google Scholar 

  • Federação das Indústrias do Estado de São Paulo/Centro das Indústrias do Estado de São Paulo - FIESP/CIESP. (2012). Ampliação da oferta de energia através da biomassa. http://www.fiesp.com.br/indices-pesquisas-e-publicacoes/ampliacao-da-oferta-de-energia-atraves-de-biomassa/. Accessed 13 July 2017.

  • Gomes, P. C. C. (2003) Optimization and characterization of high-strength self- compacting concrete. Thesis—Doctorate in Civil Engineering. Barcelona: School of D’Enginyeria of Construction of Camins, Universitat Politecnica of Catalunya, p 139.

  • Gomes, P. C. C., & de Barros, A. R. (2009). Métodos de dosagem de concreto autoadensável (1st ed.). São Paulo: Pini.

    Google Scholar 

  • Itaipu Binacional. (2017). Concretagem. https://www.itaipu.gov.br/energia/concretagem. Accessed 25 Oct 2017.

  • Lager, G. A., Jorgensen, J. D., & Rotella, F. J. (1982). Crystal structure and thermal expansion of α-quartz SiO2 at low temperatures. Journal of Applied Physics, doi, 10(1063/1), 330062.

    Google Scholar 

  • Madandoust, R., Mohseni, E., Mousavi, S. Y., & Namnevis, M. (2015). An experimental investigation on the durability of self-compacting mortar containing nano-SiO2, nano-Fe2O3 and nano-CuO. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2015.03.100.

    Article  Google Scholar 

  • Modani, P. O., & Vyawahare, M. R. (2013). Utilization of bagasse ash as a partial replacement of fine aggregate in concrete. Procedia Engineering. https://doi.org/10.1016/j.proeng.2013.01.007.

    Article  Google Scholar 

  • Mohseni, E., Miyandehi, B. M., Yang, J., & Yazdi, M. A. (2015). Single and combined effects of nano-SiO2, nano-Al2O3 and nano-TiO2 on the mechanical, rheological and durability properties of self-compacting mortar containing fly ash. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2015.03.006.

    Article  Google Scholar 

  • Moisés, M. P., Silva, C. T. P. da, Meneguin, J. G., Girotto, E. M., & Radovanovic, E. (2013). Synthesis of zeolite NaA from sugarcane bagasse ash. Materials Letters. https://doi.org/10.1016/j.matlet.2013.06.086.

    Article  Google Scholar 

  • Molin Filho, R. G. D., Vanderlei, R. D., Kim, L. S., Watanabe, O. T. Q., & Nagano, M. F. (2011). Análise reológica da pasta de cimento para concreto autoadensável (Rheological analysis of cement paste for self-compacting concrete) [CD- ROM]. In SOARES, D. A. F (Eds.), Proceedings of the IX Encontro Tecnológico da Engenharia Civil e Arquitetura, October 01–03, 2013. State University of Maringá, Maringá, Brazil.

  • Moretti, J. P., Sales, A., Almeida, F. C. R., Rezende, M. A. M., & Gromboni, P. P. (2016). Joint use of construction waste (CW) and sugarcane bagasse ash sand (SBAS). Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2016.03.062.

    Article  Google Scholar 

  • Nepomuceno, M., Oliveira, L., & Lopes, S. M. R. (2012). Methodology for mix design of the mortar phase of self-compacting concrete using different mineral additions in binary blends of powders. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2011.06.027.

    Article  Google Scholar 

  • Nogueira, N. O., Tomaz, M. A., Andrade, F. V., Reis, E. F. D., & Brinatem, S. V. B. (2012). Influência da aplicação de dois resíduos industriais nas propriedades químicas de dois solos cultivados com café arábica (Influence of the application of two industrial residues on the chemical properties of two soils cultivated with Arabica coffee). Ciências Agronômicas. https://doi.org/10.1590/S1806-66902012000100002.

    Article  Google Scholar 

  • Nunes, S. C. B. (2001). Betão Auto-Compactível: Tecnologia e Propriedades (self-compacting concrete: technology and properties). Dissertation—Master’s degree in Structural Engineering, Porto: Engineering Department, University of Porto, p 198.

  • Okamura, H., & Ouchi, M. (1999). Self-compacting concrete. Development, present use and future. In Å. Skarendahl & Ö. Petersson (Eds.), Proceedings of the first international RILEM symposium on self-compacting concrete, September 13–14, 1999. Stockholm, Sweden. Stockholm: RILEM Publications S.A.R.L. 3–14.

  • Okamura, H., & Ouchi, M. (2003). Self-compacting concrete. Jornal of Advance Concrete Technology, 1(1), 5–15.

    Article  CAS  Google Scholar 

  • R Development Core Team. (2016). The R Project for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/. Accessed 5 Aug 2016.

  • Rao, S., Silva, P., & De Brito, J. (2015). Experimental study of the mechanical properties and durability of self-compacting mortars with nano materials (SiO2 and TiO2). Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2015.08.049.

    Article  Google Scholar 

  • Safi, B., Ghernouti, Y., Rabehi, B., & Aboutaleb, D. (2013). Effect of the heat curing on strength development of self-compacting mortars containing calcined silt of dams and ground brick waste. Materials Research. https://doi.org/10.1590/S1516-14392013005000094.

    Article  Google Scholar 

  • Sales, A., & Lima, S. A. (2010). Use of Brazilian sugarcane bagasse ash in concrete as sand replacement. Waste Management. https://doi.org/10.1016/j.wasman.2010.01.026.

    Article  Google Scholar 

  • Santos, A. (2011). Maracanã encolhe, mas ganha inovações e sustentabilidade. http://www.cimentoitambe.com.br/maracana-encolhe-mas-ganha-inovacoes-e-sustentabilidade. Accessed 24 Oct 2017.

  • Silva, P. R. da, & Brito, J. de (2015). Fresh-state properties of self-compacting mortar and concrete with combined use of limestone filler and fly ash. Materials Research. https://doi.org/10.1590/1516-1439.028715.

    Article  Google Scholar 

  • Takada, K., Walraven, J.C. Influence of mixing efficiency on the properties of flowable cement pastes. In Ozaka K. Ouchi M (Eds.), Proceedings of the second international RILEM symposium on self-compacting concrete; 23–25 October 2001; Tokyo, Japan. Tokyo. pp. 545–554.

  • Vanderlei, R. D., Peinado, H. S., Nagano, M. F., & Molin Filho, R. G. D. (2014). Uso da cinza do bagaço de cana-de-açúcar como agregado em concretos e argamassas. REEC – Revista eletrônica de Engenharia Cívil, https://doi.org/10.5216/reec.v8i1.26534.

  • Zhang, L. (2013). Production of bricks from waste materials—A review. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2013.05.043.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the civil construction materials laboratory of DEC-UEM. The SCBA and additives were suported by Usaçúcar Group and BASF S/A in Brazil, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Germano Dal Molin Filho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molin Filho, R.G.D., Longhi, D.A., de Souza, R.C.T. et al. Self-compacting mortar with sugarcane bagasse ash: development of a sustainable alternative for Brazilian civil construction. Environ Dev Sustain 21, 2125–2143 (2019). https://doi.org/10.1007/s10668-018-0127-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-018-0127-x

Keywords

Navigation