Skip to main content
Log in

Batch and flow-through column adsorption study: recovery of Pt4+ from aqueous solutions by 3-aminopropyl(diethoxy)methylsilane functionalised zeolite (APDEMSFZ)

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The recovery of platinum from waste is of high importance since significant concentrations are lost during processing, but the current methods are not economically effective. The removal of Pt4+ from aqueous solutions at different conditions using zeolite functionalised with 3-aminopropyl(diethoxy)methylsilane (APDEMS) was investigated. The adsorbent was used to assess the effect of adsorbent mass, pH, concentration, time and competing ions on the removal of Pt4+ so that optimum working conditions could be determined. The two- and three-parameter isotherm models as well as kinetic models were fitted using the experimental data. Effect of adsorbent bed height (2 and 5 cm), pH (2–7) and initial concentration (2 and 5 mg L−1) was determined with column experiments. Significant adsorption capacity was achieved with 100 mg adsorbent at pH 2, within 180 min. Adsorption capacity of Pt4+ significantly decreased at pH > 2. Higher bed depth increased the exhaustion and breakthrough times. The adsorption capacity of Pt4+ increased as bed height and concentration increased. The highest breakthrough and exhaustion times were achieved at pH 2. Strong Pt4+-adsorbent interaction concluded from the experiments, adsorption kinetics and isotherms models indicates that APDEMSFZ is suitable for Pt4+ recovery from mining wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alonso, E., Field, F.R,, Roth, R., & Kirchain, R.E. (2009). Strategies to address risks of platinum scarcity for supply chain downstream firms. In IEEE international symposium on sustainable systems and technology, 2009. ISSST’09 (pp. 1–6). IEEE

  • Aziz, A. S. A., Manaf, L. A., Man, H. C., & Kumar, N. S. (2014). Column dynamic studies and breakthrough curve analysis for Cd (II) and Cu (II) ions adsorption onto palm oil boiler mill fly ash (POFA). Environmental Science and Pollution Research, 21(13), 7996–8005.

    Google Scholar 

  • Bakatula, E. N., Mosai, A. K., & Tutu, H. (2015). Removal of uranium from aqueous solutions using ammonium-modified zeolite. South African Journal of Chemistry, 68, 165–171.

    CAS  Google Scholar 

  • Biswas, S., Mishra, U. (2015). Continuous fixed-bed column study and adsorption modeling: Removal of lead ion from aqueous solution by charcoal originated from chemical carbonization of rubber wood sawdust. Journal of Chemistry, 2015.

  • Can, Ö., Balköse, D., & Ülkü, S. (2010). Batch and column studies on heavy metal removal using a local zeolitic tuff. Desalination, 259(1–3), 17–21.

    CAS  Google Scholar 

  • Cantuaria, M. L., de Almeida Neto, A. F., Nascimento, E. S., & Vieira, M. G. (2016). Adsorption of silver from aqueous solution onto pre-treated bentonite clay: Complete batch system evaluation. Journal of Clean Production, 112, 1112–1121.

    CAS  Google Scholar 

  • Chantawong, V. (2004). Adsorption of heavy metals by montmorillonite. In The joint international conference on “Sustainable Energy and Environment (SEE) (pp. 1–3).

  • Chassary, P., Vincent, T., Marcano, J. S., Macaskie, L. E., & Guibal, E. (2005). Palladium and platinum recovery from bicomponent mixtures using chitosan derivatives. Hydrometallurgy, 76(1–2), 131–147.

    CAS  Google Scholar 

  • Chen, X. (2015). Modeling of experimental adsorption isotherm data. Information, 6(1), 14–22.

    Google Scholar 

  • Chieng, H. I., Priyantha, N., & Lim, L. B. (2015). Effective adsorption of toxic brilliant green from aqueous solution using peat of Brunei Darussalam: isotherms, thermodynamics, kinetics and regeneration studies. RSC Advances, 5(44), 34603–34615.

    CAS  Google Scholar 

  • Foo, K. Y., Lee, L. K., & Hameed, B. H. (2013). Preparation of tamarind fruit seed activated carbon by microwave heating for the adsorptive treatment of landfill leachate: A laboratory column evaluation. Bioresource Technology, 133, 599–605.

    CAS  Google Scholar 

  • Gorle, A. K., Berners-Price, S. J., & Farrell, N. P. (2019). Biological relevance of interaction of platinum drugs with O-donor ligands. Inorganica chimica acta, 118974.

  • Guaya, D., Valderrama, C., Farran, A., Armijos, C., & Cortina, J. L. (2015). Simultaneous phosphate and ammonium removal from aqueous solution by a hydrated aluminum oxide modified natural zeolite. Chemical Engineering Journal, 271, 204–213.

    CAS  Google Scholar 

  • Han, K.N., Kim, P.N.S. (2006). U.S. Patent No. 7,067,090. Washington, DC: U.S. Patent and Trademark Office.

  • Han, R., Wang, Y., Zhao, X., Wang, Y., Xie, F., Cheng, J., et al. (2009). Adsorption of methylene blue by phoenix tree leaf powder in a fixed-bed column: Experiments and prediction of breakthrough curves. Desalination, 245(1–3), 284–297.

    CAS  Google Scholar 

  • Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., & Zhang, Q. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides: A review. Journal of Hazardous Materials, 211, 317–331.

    Google Scholar 

  • Huang, H., Xiao, D., Pang, R., Han, C., & Ding, L. (2014). Simultaneous removal of nutrients from simulated swine wastewater by adsorption of modified zeolite combined with struvite crystallization. Chemical Engineering Journal, 256, 431–438.

    CAS  Google Scholar 

  • Huang, Y., Zeng, X., Guo, L., Lan, J., Zhang, L., & Cao, D. (2018). Heavy metal ion removal of wastewater by zeolite-imidazolate frameworks. Separation and Purification Technology, 194, 462–469.

    CAS  Google Scholar 

  • Hunt, A. J., Matharu, A. S., King, A. H., & Clark, J. H. (2015). The importance of elemental sustainability and critical element recovery. Green Chemistry, 17(4), 1949–1950.

    CAS  Google Scholar 

  • Johnson, M. (2016). PGM market report 2016, Summary of platinum, supply and demand in 2015.

  • Jones, R. T. (1999). Platinum in South Africa to commemorate the 75th anniversary of the discovery of the Merensky Reef. South African Journal of Science, 95, 525.

    CAS  Google Scholar 

  • Karimi, S., Ghobadian, B., Omidkhah, M. R., Towfighi, J., & Yaraki, M. T. (2016). Experimental investigation of bioethanol liquid phase dehydration using natural clinoptilolite. Journal of advanced research, 7(3), 435–444.

    CAS  Google Scholar 

  • Karimi, S., Yaraki, M. T., & Karri, R. R. (2019). A comprehensive review of the adsorption mechanisms and factors influencing the adsorption process from the perspective of bioethanol dehydration. Renewable and Sustainable Energy Reviews, 107, 535–553.

    CAS  Google Scholar 

  • Karnib, M., Kabbani, A., Holail, H., & Olama, Z. (2014). Heavy metals removal using activated carbon, silica and silica activated carbon composite. Energy Procedia, 50, 113–120.

    CAS  Google Scholar 

  • Kiran, B., & Kaushik, A. (2008). Cyanobacterial biosorption of Cr(VI): Application of two parameter and Bohart Adams models for batch and column studies. Chemical Engineering Journal, 144(3), 391–399.

    CAS  Google Scholar 

  • Kyzas, G. Z., & Bikiaris, D. N. (2015). Recent modifications of chitosan for adsorption applications: A critical and systematic review. Marine Drugs, 13(1), 312–337.

    Google Scholar 

  • Li, Z., Wang, L., Meng, J., Liu, X., Xu, J., Wang, F., et al. (2018). Zeolite-supported nanoscale zero-valent iron: New findings on simultaneous adsorption of Cd (II), Pb(II), and As (III) in aqueous solution and soil. Journal of Hazardous Materials, 344, 1–11.

    CAS  Google Scholar 

  • Lottermoser, B. (2003). Mine water. Mine wastes (pp. 83–141). Berlin: Springer.

    Google Scholar 

  • Lu, X., Shi, D., & Chen, J. (2017). Sorption of Cu 2 + and Co 2 + using zeolite synthesized from coal gangue: isotherm and kinetic studies. Environmental Earth Sciences, 76(17), 591.

    Google Scholar 

  • Malamis, S., & Katsou, E. (2013). A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms. Journal of Hazardous Materials, 252, 428–461.

    Google Scholar 

  • Mosai, A. K., Chimuka, L., Cukrowska, E. M., Kotzé, I. A., & Tutu, H. (2019). The recovery of Platinum (IV) from aqueous solutions by hydrazine-functionalised zeolite. Minerals Engineering, 131, 304–312.

    CAS  Google Scholar 

  • Mosai, A.K., Chimuka, L., Cukrowska, E. M., Kotźe, I. A., Tutu, H. (2018). The recovery of Pt(IV) from aqueous solutions by APDEMS-functionalised zeolite. In: 11th ICARD|IMWA|MWD conference“Risk to Opportunity” (pp. 1111–1116)

  • Muraleedharan, T. R., Philip, L., Iyengar, L., & Venkobachar, C. (1994). Application studies of biosorption for monazite processing industry effluents. Bioresource Technology, 49(2), 179–186.

    CAS  Google Scholar 

  • Mushtaq, M., Bhatti, H. N., Iqbal, M., & Noreen, S. (2016). Eriobotrya japonica seed biocomposite efficiency for copper adsorption: isotherms, kinetics, thermodynamic and desorption studies. Journal of Environmental Management, 176, 21–33.

    CAS  Google Scholar 

  • Nguyen, T. H., Sonu, C. H., & Lee, M. S. (2016). Separation of Pt(IV), Pd (II), Rh (III) and Ir(IV) from concentrated hydrochloric acid solutions by solvent extraction. Hydrometallurgy, 164, 71–77.

    CAS  Google Scholar 

  • Ramesh, A., Hasegawa, H., Sugimoto, W., Maki, T., & Ueda, K. (2008). Adsorption of gold (III), platinum (IV) and palladium (II) onto glycine modified crosslinked chitosan resin. Bioresource Technology, 99(9), 3801–3809.

    CAS  Google Scholar 

  • Redlich, O. J. D. L., & Peterson, D. L. (1959). A useful adsorption isotherm. Journal of Physical Chemistry, 63(6), 1024–1024.

    CAS  Google Scholar 

  • Ren, H., Jiang, J., Wu, D., Gao, Z., Sun, Y., & Luo, C. (2016). Selective adsorption of Pb(II) and Cr(VI) by surfactant-modified and unmodified natural zeolites: A comparative study on kinetics, equilibrium, and mechanism. Water, Air, and Soil pollution, 227(4), 101.

    Google Scholar 

  • Roosen, J., Van Roosendael, S., Borra, C. R., Van Gerven, T., Mullens, S., & Binnemans, K. (2016). Recovery of scandium from leachates of Greek bauxite residue by adsorption on functionalized chitosan–silica hybrid materials. Green Chemistry, 18(7), 2005–2013.

    CAS  Google Scholar 

  • Sips, R. (1948). On the structure of a catalyst surface. The Journal of Chemical Physics, 16(5), 490–495.

    CAS  Google Scholar 

  • Sounthararajah, D. P., Loganathan, P., Kandasamy, J., & Vigneswaran, S. (2017). Removing heavy metals using permeable pavement system with a titanate nano-fibrous adsorbent column as a post treatment. Chemosphere, 168, 467–473.

    CAS  Google Scholar 

  • Statista (2017). https://www.statista.com/statistics/271231/use-of-platinum/. Accessed 09 May 2017.

  • Tanzifi, M., Yaraki, M. T., Karami, M., Karimi, S., Kiadehi, A. D., Karimipour, K., et al. (2018). Modelling of dye adsorption from aqueous solution on polyaniline/carboxymethyl cellulose/TiO2 nanocomposites. Journal of Colloid and Interface Science, 519, 154–173.

    CAS  Google Scholar 

  • Teo, H. W. B., Chakraborty, A., Kitagawa, Y., & Kayal, S. (2017). Experimental study of isotherms and kinetics for adsorption of water on Aluminium Fumarate. International Journal of Heat and Mass Transfer, 114, 621–627.

    CAS  Google Scholar 

  • Terzyk, A. P., Chatłas, J., Gauden, P. A., Rychlicki, G., & Kowalczyk, P. (2003). Developing the solution analogue of the Toth adsorption isotherm equation. Journal of Colloid and Interface Science, 266(2), 473–476.

    CAS  Google Scholar 

  • Wang, W., Li, M., & Zeng, Q. (2015). Adsorption of chromium (VI) by strong alkaline anion exchange fiber in a fixed-bed column: experiments and models fitting and evaluating. Separation and Purification Technology, 149, 16–23.

    CAS  Google Scholar 

  • Wang, M., Tan, Q., Chiang, J. F., & Li, J. (2017). Recovery of rare and precious metals from urban mines—A review. Frontiers of Environmental Science & Engineering, 11(5), 1.

    Google Scholar 

  • Wen, J., Yi, Y., & Zeng, G. (2016). Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction. Journal of Environmental Management, 178, 63–69.

    CAS  Google Scholar 

  • Xiao, Z., & Laplante, A. R. (2004). Characterizing and recovering the platinum group minerals—a review. Minerals Engineering, 17(9–10), 961–979.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial contribution from the National Research Foundation (Grant No: 108556) and the Water Research Commission (Project No. K5/2589).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hlanganani Tutu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosai, A.K., Chimuka, L., Cukrowska, E.M. et al. Batch and flow-through column adsorption study: recovery of Pt4+ from aqueous solutions by 3-aminopropyl(diethoxy)methylsilane functionalised zeolite (APDEMSFZ). Environ Dev Sustain 23, 7041–7062 (2021). https://doi.org/10.1007/s10668-020-00903-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00903-x

Keywords

Navigation