Skip to main content

Advertisement

Log in

Influence of temperature and strain rate on cohesive properties of a structural epoxy adhesive

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Effects of temperature and strain rate on the cohesive relation for an engineering epoxy adhesive are studied experimentally. Two parameters of the cohesive laws are given special attention: the fracture energy and the peak stress. Temperature experiments are performed in peel mode using the double cantilever beam specimen. The temperature varies from −40 to + 80°C. The temperature experiments show monotonically decreasing peak stress with increasing temperature from about 50 MPa at −40°C to about 10 MPa at + 80°C. The fracture energy is shown to be relatively insensitive to the variation in temperature. Strain rate experiments are performed in peel mode using the double cantilever beam specimen and in shear mode, using the end notch flexure specimen. The strain rates vary; for peel loading from about 10−4 to 10 s−1 and for shear loading from 10−3 to 1 s−1. In the peel mode, the fracture energy increases slightly with increasing strain rate; in shear mode, the fracture energy decreases. The peak stresses in the peel and shear mode both increase with increasing strain rate. In peel mode, only minor effects of plasticity are expected while in shear mode, the adhesive experiences large dissipation through plasticity. Rate dependent plasticity, may explain the differences in influence of strain rate on fracture energy between the peel mode and the shear mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfredsson KS (2004) On the instantaneous energy release rate of the end-notch flexure adhesive joint specimen. Int J Solids Struct 41: 4787–4807. doi:10.1016/j.ijsolstr.2004.03.008

    Article  MATH  Google Scholar 

  • Alfredsson KS, Biel A, Leffler K (2003) An experimental method to determine the complete stress-deformation relation for a structural adhesive layer loaded in shear. In: Proceedings of the 9th international conference on the mechanical behaviour of materials, Geneva, Switzerland, 2002

  • Andersson T, Biel A (2006) On the effective constitutive properties of a thin adhesive layer loaded in peel. Int J Fract 141: 227–246. doi:10.1007/s10704-006-0075-6

    Article  Google Scholar 

  • Andersson T, Stigh U (2004) The stress-elongation relation for an adhesive layer loaded in modus I using equilibrium of energetic forces. Int J Solids Struct 41: 413–434. doi:10.1016/j.ijsolstr.2003.09.039

    Article  Google Scholar 

  • Ashcroft IA, Hughes DJ, Shaw SJ (2001) Mode I fracture of epoxy bonded composites joints: 1. Quasi-static loading. Int J Adhes Adhesives 21: 87–99. doi:10.1016/S0143-7496(00)00038-5

    Article  CAS  Google Scholar 

  • Bascom WD, Cottington RL (1976) Effect of temperature on the adhesive fracture behaviour of an elastomer-epoxy resin. J Adhes 7: 333–346. doi:10.1080/00218467608075063

    Article  CAS  Google Scholar 

  • Biel A (2008) Cohesive laws for adhesives at repeated loading—an experimental method (in preparation)

  • Biel A, Carlberger T (2007) Influence of temperature on cohesive parameters for adhesives. In: Sørensen BF, Mikelsen LP, Lilholt H, Goutianos S, Abdul-Mahdi FS (eds) Procceedings of 28th Risø international symposium on materials science

  • Biel A, Stigh U (2007) An analysis of the evaluation of the fracture energy using the DCB-specimen. Arch Mech 59: 311–327

    MATH  Google Scholar 

  • Biel A, Stigh U (2008) Effects of constitutive parameters on the accuracy of measured fracture energy using the DCB-specimen. Eng Fract Mech 75: 2968–2983. doi:10.1016/j.engfracmech.2008.01.002

    Article  Google Scholar 

  • Blackman BRK, Kinloch AJ, Taylor AC, Wang Y (2000) The impact wedge-peel performance of structural adhesives. J Mater Sci 35: 1867–1884. doi:10.1023/A:1004793730352

    Article  CAS  Google Scholar 

  • Blackman BRK, Hadavinia H, Kinloch AJ, Williams JG (2003) The use of a cohesive zone model to study the fracture of fibre composites and adhesively-bonded joints. Int J Fract 119: 25–46. doi:10.1023/A:1023998013255

    Article  Google Scholar 

  • Carlberger T, Stigh U (2007) An explicit FE-model of impact fracture in an adhesive joint. Eng Fract Mech 74: 2247–2262. doi:10.1016/j.engfracmech.2006.10.016

    Article  Google Scholar 

  • Chai H (2004) The effects of bond thickness, rate and temperature on the deformation and fracture of structural adhesives under shear loading. Int J Fract 130: 497–515. doi:10.1023/B:FRAC.0000049504.51847.2a

    Article  CAS  Google Scholar 

  • Guo C, Sun CT (1998) Dynamic mode-I crack-propagation in a carbon/epoxy composite. Compos Sci Technol 58: 1405–1410. doi:10.1016/S0266-3538(98)00025-6

    Article  CAS  Google Scholar 

  • Högberg JL, Sørensen BF, Stigh U (2007) Constitutive behaviour of mixed mode loaded adhesive layer. Int J Solids Struct 44: 8335–8354. doi:10.1016/j.ijsolstr.2007.06.014

    Article  Google Scholar 

  • Kinloch AJ (1987) Adhesion and adhesives—science and technology. Chapman and Hall, London

    Google Scholar 

  • Kinloch AJ, Shaw SJ (1981) The fracture resistance of a toughened epoxy adhesive. J Adhes 12: 59–77. doi:10.1080/00218468108071189

    Article  CAS  Google Scholar 

  • Kusaka T, Hojo M, Mai Y, Kurokawa T, Nojima T, Ochiai S (1998) Rate dependence of mode-I fracture behaviour in carbon-fibre/epoxy composite laminates. Compos Sci Technol 58: 591–602. doi:10.1016/S0266-3538(97)00176-0

    Article  CAS  Google Scholar 

  • Leffler K, Alfredsson KS, Stigh U (2007) Shear behaviour of adhesive layers. Int J Solids Struct 44: 530–545. doi:10.1016/j.ijsolstr.2006.04.036

    Article  MATH  Google Scholar 

  • Lutz A, Schneider D (2006) Toughened epoxy adhesive composition. USPTO Applicaton #: 20060276601—Class: 525528000 (USPTO), Dow Chemical Company—Midland, MI, USA

  • Olsson P, Stigh U (1989) On the determination of the constitutive properties of the interphase layers—an exact solution. Int J Fract 41: 71–76. doi:10.1007/BF00018870

    Article  Google Scholar 

  • Salomonsson K, Andersson T (2008) Modeling and parameter calibration of an adhesive layer at the meso level. Mech Mater 40: 48–65. doi:10.1016/j.mechmat.2007.06.004

    Article  Google Scholar 

  • Salomonsson K, Stigh U (2008) An adhesive interphase element for structural analyses. Int J Numer Methods Eng (To appear). doi:10.1002/nme.2333

  • Schmidt P (2007) Computational models of adhesively bonded joints. PhD thesis, Linköping University

  • Sørensen BF (2002) Cohesive law and notch sensitivity of adhesive joints. Acta Mater 50: 1053–1061. doi:10.1016/S1359-6454(01)00404-9

    Article  Google Scholar 

  • Sørensen BF, Jørgensen K, Jacobsen TK, Østergaard RC (2006) DCB-specimen loaded with uneven bending moments. Int J Fract 141: 163–176. doi:10.1007/s10704-006-0071-x

    Article  Google Scholar 

  • Stigh U (1988) Damage and crack growth analysis of the double cantilever beam specimen. Int J Fract 37: R13–R18. doi:10.1007/BF00017826

    Article  Google Scholar 

  • Stigh U, Andersson T (2000) An experimental method to determine the complete stress-elongation relation for a structural adhesive layer loaded in peel. In: Williams JG, Pavan A (eds) Fracture of polymers, composites and adhesives. ESIS publication 27.. Elsevier, Amsterdam, pp 297–306

    Chapter  Google Scholar 

  • Suo Z, Bao G, Fan B (1992) Delamination R-curve phenomena due to damage. J Mech Phys Solids 40: 1–16. doi:10.1016/0022-5096(92)90198-B

    Article  ADS  Google Scholar 

  • Tamuzs V, Tarasovs S, Vilks U (2003) Delamination properties of translaminar-reinforced composites. Compos Sci Technol 63: 1423–1431. doi:10.1016/S0266-3538(03)00042-3

    Article  CAS  Google Scholar 

  • Yang QD, Thouless MD (2001) Mixed-mode fracture analyses of plastically deforming adhesive joints. Int J Fract 110: 175–187. doi:10.1023/A:1010869706996

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Carlberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlberger, T., Biel, A. & Stigh, U. Influence of temperature and strain rate on cohesive properties of a structural epoxy adhesive. Int J Fract 155, 155–166 (2009). https://doi.org/10.1007/s10704-009-9337-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-009-9337-4

Keywords

Navigation