Skip to main content
Log in

Interfacial fracture of piezoelectric multilayer actuators under mechanical and electrical loading

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The fracture behaviour of metal-piezoceramic interfaces under mechanical and electrical loading is examined by four point bending using commercial multilayer actuators. The experiments are performed under stable crack growth in a custom made very stiff testing machine. Besides mechanical loading, a constant electric field was methodically switched on in longitudinal specimen direction. Both poled and unpoled actuators were tested. The crack morphology and the fracture toughness depend on the type of the metal-ceramic interfaces. Assuming different electrical crack boundary conditions of a permeable and an impermeable crack, the field intensity factors K ic , with i = 1, 2, 3, and energy release rates G c (K ic ) at the measured critical loads are evaluated with linear-piezoelectric finite element calculations. Inside the bounds of the electrically induced mixed-mode angles, the permeable crack boundary condition yields a constant interface toughness Γ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson TL (1995) Fracture mechanics, fundamentals and applications, 2nd. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Balke H, Kemmer G, Drescher J (1997) Some remarks on fracture mechanics of piezoelectric solids. In: Michel B, Winkler T (eds) Proceedings of the International Conference and Exhibition of Micro Materials, Berlin, pp 398–401

  • Dawber M, Scott J (2001) Fatigue and oxygen vacancy ordering in thin film and bulk single crystal ferroelectrics. Integr Ferroelectr 32: 259–266

    Article  CAS  Google Scholar 

  • Fu R, Zhang TY (2000) Effects of an electric field on the fracture toughness of poled lead zirconate titanate ceramics. J Am Ceram Soc 83: 1215–1218

    Article  CAS  Google Scholar 

  • Guiu F, Algueró M, Reece MJ (2003) Crack extension force and rate of mechanical work of fracture in linear dielectrics and piezoelectrics. Philos Mag 83: 873–888

    Article  CAS  ADS  Google Scholar 

  • Häusler C, Balke H (2001) Der Grenzflächenriss zwischen einer Piezokeramik und einem Leiter. In: Haupt P, Kersten T, Ulbricht V (eds) Beiträge zur Modellierung und Identifikation. Berichte des Instituts für Mechanik, kassel university press GmbH, Universität Gesamthochschule Kassel, Kassel pp 57–66

    Google Scholar 

  • Häusler C, Balke H (2005) Full form of the near tip field for the interface crack between a piezoelectric material and a thin electrode. Mater Sci Forum 492–493: 261–266

    Article  Google Scholar 

  • Häusler C, Gao CF, Balke H (2004) Collinear and periodic electrode-ceramic interfacial cracks in piezoelectric bimaterials. J Appl Mech 71(4): 486–492

    Article  MATH  CAS  Google Scholar 

  • Hutchinson JW, Suo Z (1992) Mixed mode cracking in layered materials. In: Hutchinson JW, Wu TY (eds) Advances in applied mechanics, vol 29. Academic Press, San Diego, CA, pp 63–191

    Google Scholar 

  • Jelitto H, Keßler H, Schneider GA, Balke H (2005) Fracture behavior of poled piezoelectric PZT under mechanical and electrical loads. J Eur Ceram Soc 25: 749–757

    Article  CAS  Google Scholar 

  • Kuna M (2006) Finite element analyses of cracks in piezoelectric structures—a survey. Arch Appl Mech 76: 725–745

    Article  MATH  Google Scholar 

  • Lynch CS (1998) Fracture of ferroelectric and relaxor electro-ceramics: influence of electric field. Acta mater 46: 599–608

    Article  CAS  Google Scholar 

  • McMeeking RM (1989) Electrostrictive stresses near crack-like flaws. J Appl Maths Phys (ZAMP) 40: 615–627

    Article  MATH  Google Scholar 

  • McMeeking RM (2001) Towards a fracture mechanics for brittle piezoelectric and dielectric materials. Int J Fract 108: 25–41

    Article  Google Scholar 

  • Pritchard J, Bowen CR, Lowrie F (2001) Multilayer act uators: review. Br Ceram Trans 100(6): 265–273

    Article  CAS  Google Scholar 

  • Rice JR (1988) Elastic fracture mechanics concepts for interfacial cracks. J Appl Mech 55: 98–103

    Article  Google Scholar 

  • Schneider GA (2002) Fracture mechanical and mechanical properties of piezo-electric ceramics and piezoceramic/electrode interfaces under high electric fields. In: Setter N (eds) Piezoelectric materials and devices, Nava Setter. Ceramic laboratory, EPFL Swiss Federal Laboratory of Technology, Lausanne 1015, Switzerland, pp 195–210

    Google Scholar 

  • Schneider GA (2007) Influence of electric field and mechanical stresses on the fracture of ferroelectrics. Annu Rev Mater Res 37: 491–538

    Article  CAS  ADS  Google Scholar 

  • Schneider GA, Felten F, McMeeking RM (2003) The electrical potential difference across cracks in PZT measured by Kelvin Probe Microscopy and the implications for fracture. Acta mater 51: 2235–2241

    Article  CAS  Google Scholar 

  • Weitzing H (2000) Schadensphänomene und bruchmechanische Charakterisierung piezokeramischer Multilayeraktoren. Dissertation, Shaker Verlag, Technische Universität Hamburg-Harburg

  • Zhang TY, Zhao M, Tong P (2001) Fracture of piezoelectric ceramics. In: van der Giessen E, Wu TY (eds) Advances in applied mechanics, vol 38. Academic Press, San Diego, CA, pp 147–289

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Häusler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Häusler, C., Jelitto, H., Neumeister, P. et al. Interfacial fracture of piezoelectric multilayer actuators under mechanical and electrical loading. Int J Fract 160, 43–54 (2009). https://doi.org/10.1007/s10704-009-9408-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-009-9408-6

Keywords

Navigation