Skip to main content
Log in

Higher order Cauchy–Born rule based multiscale cohesive zone model and prediction of fracture toughness of silicon thin films

  • CompMech
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In this work, we extend the multiscale cohesive zone model (MCZM) (Zeng and Li in Comput Methods Appl Mech Eng 199:547–556, 2010), in which interatomic potential is embedded into constitutive relation to express cohesive law in fracture process zone, to include the hierarchical Cauchy–Born rule in the process zone and to simulate three dimensional fracture in silicon thin films. The model has been applied to simulate fracture stress and fracture toughness of single-crystal silicon thin film by using the Tersoff potential. In this study, a new approach has been developed to capture inhomogeneous deformation inside the cohesive zone. For this purpose, we introduce higher order Cauchy–Born rules to construct constitutive relations for corresponding higher order process zone elements, and we introduce a sigmoidal function supported bubble mode in finite element shape function of those higher order cohesive zone elements to capture the nonlinear inhomogeneous deformation inside the cohesive zone elements. Benchmark tests with simple 3D models have confirmed that the present method can predict the fracture toughness of silicon thin films. Interestingly, this is accomplished without increasing of computational cost, because the present model does not require quadratic elements to represent heterogeneous deformation, which is the inherent weakness of the previous MCZM model. Quantitative comparisons with experimental results are performed by computing crack propagation in non-notched and initially notched silicon thin films, and it is found that our model can reproduce essential material properties, such as Young’s modulus, fracture stress, and fracture toughness of single-crystal silicon thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Abraham FF, Bernstein N, Broughton JQ, Hess D (2000) Dynamic fracture of silicon: concurrent simulation of quantum electrons, classical atoms, and the continuum solid. MRS Bull 25:27–32

    Article  Google Scholar 

  • Ando T, Li X, Nakao S, Kasai T, Tanaka H, Shikida M, Sato K (2005) Fracture toughness measurement of thin-film silicon. Fatigue Fract Eng Mater Struct 28:687–694

    Article  Google Scholar 

  • Belytschko T (1983) An overview of semidiscretization and time integration procedures. Computational methods for transient analysis (A 84-29160 12-64). North Holland, Amsterdam, pp 1–65

  • Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620

    Article  Google Scholar 

  • Belytschko T, Möes N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements. Int J Numer Methods Eng 50:993–1013

    Article  Google Scholar 

  • Bogue R (2007) MEMS sensors: past, present and future. Sens Rev 27:7–13

    Article  Google Scholar 

  • Boyd EJ, Li L, Blue R, Uttamchandani D (2013) Measurement of the temperature coefficient of Young’s modulus of single crystal silicon and 3C silicon carbide below 273 K using micro-cantilevers. Sens Actuators A Phys 198:75–80

    Article  Google Scholar 

  • Buehler MJ, van Duin ACT, Goddard WA III (2006) Multiparadigm modeling of dynamical crack propagation in silicon using a reactive force field. Phys Rev Lett 96:095505

    Article  Google Scholar 

  • Chasiotis I, Cho SW, Jonnalagadda K (2006) Fracture toughness and subcritical crack growth in polycrystalline silicon. J Appl Mech 73:714–722

    Article  Google Scholar 

  • de Brito Mota F, Justo JF, Fazzio A (1998) Structural properties of amorphous silicon nitride. Phys Rev B 58:8323

    Article  Google Scholar 

  • Demetriou MD, Launey ME, Garrett G, Schramm JP, Hofmann DC, Johnson WL, Ritchie RO (2010) A damage-tolerant glass. Nat Mate 10:123–128

    Article  Google Scholar 

  • Ericson F, Schweitz JÅ (1990) Micromechanical fracture strength of silicon. J Appl Phys 68:5840

    Article  Google Scholar 

  • Fan H, Li S (2015) Multiscale cohesive zone modeling of crack propagations in polycrystalline solids. GAMMMitteilungen 38:268–284

    Google Scholar 

  • Fan H, Shi C, Li S (2013) Application of multiscale process zone model to simulate fracture in polycrystalline solids. J Multiscale Model 5:1350015

    Article  Google Scholar 

  • Fitzgerald AM, Dauskardt RH, Kenny TW (2000) Fracture toughness and crack growth phenomena of plasma-etched single crystal silicon. Sens Actuators A Phys 83:194–199

    Article  Google Scholar 

  • Hauch JA, Holland D, Marder MP, Swinney HL (1999) Dynamic fracture in single crystal silicon. Phys Rev Lett 82:3823–3826

    Article  Google Scholar 

  • He M, Li S (2012) An embedded atom hyperelastic constitutive model and multiscale cohesive finite element method. Comput Mech 49:337–355

    Article  Google Scholar 

  • Hopcroft MA, Nix WD, Kenny TW (2010) What is the Young’s modulus of silicon? J Microelectromech Syst 19:229–238

    Article  Google Scholar 

  • Izumi S, Sakai S (2004) Internal displacement and elastic properties of the silicon Tersoff potential. JSME Int J Ser A Solid Mech Mater Eng 47:54–61

    Article  Google Scholar 

  • Jensen KF (1999) Microchemical systems: status, challenges, and opportunities. AIChE J 45:2051–2054

    Article  Google Scholar 

  • Kang K, Cai W (2007) Brittle and ductile fracture of semiconductor nanowires-molecular dynamics simulations. Philos Mag 87:2169–2189

    Article  Google Scholar 

  • Karlsson S, Jonson B, Stålhandske C (2010) The technology of chemical glass strengthening–a review. Glass Technol Eur J Glass Sci Technol Part A 51:41–54

    Google Scholar 

  • Khoei AR, DorMohammadi H (2012) Validity and size-dependency of Cauchy–Born hypothesis with Tersoff potential in silicon nano-structures. Comput Mater Sci 63:168–177

    Article  Google Scholar 

  • Khoei AR, DorMohammadi H, Aramoon A (2014) A temperature-related boundary Cauchy–Born method for multi-scale modeling of silicon nano-structures. Phys Lett A 378:551–560

    Article  Google Scholar 

  • Koike A, Akiba S, Sakagami T, Hayashi K, Ito S (2012) Difference of cracking behavior due to Vickers indentation between physically and chemically tempered glasses. J Non Cryst Solids 358:3438–3444

    Article  Google Scholar 

  • Li X, Kasai T, Nakao S, Tanaka H, Ando T, Shikida M, Sato K (2005) Measurement for fracture toughness of single crystal silicon film with tensile test. Sens Actuators A Phys 119:229235

    Article  Google Scholar 

  • Li S, Zeng X, Ren B, Qian J, Zhana J, Jha AK (2012) An atomistic-based interphase zone model for crystalline solids. Comput Methods Appl Mech Eng 229:87–109

    Article  Google Scholar 

  • Li S, Ren B, Minaki H (2014) Multiscale crystal defect dynamics: a dual-lattice process zone model. Philos Mag 94:1414–1450. doi:10.1080/14786435.2014.887859

    Article  Google Scholar 

  • Liu L, Li S (2012) A finite temperature multiscale interphase zone model and simulations of fracture. J Eng Mater Technol 134:31014

    Article  Google Scholar 

  • Liu X, Li S, Sheng N (2008) A cohesive finite element for quasi-continua. Comput Mech 42:543–553

    Article  Google Scholar 

  • Madenci E, Oterkus E (2014) Peridynamics theory and its applications. Springer, Berlin

    Book  Google Scholar 

  • McMeeking RM, Evans AG (1982) Mechanics of transformation-toughening in brittle materials. J Am Ceram Soc 65:242–246

    Article  Google Scholar 

  • Munetoh S, Motooka T, Moriguchi K, Shintani A (2007) Interatomic potential for SiO systems using Tersoff parameterization. Comput Mater Sci 39:334–339

    Article  Google Scholar 

  • Nakao S, Ando T, Shikida M, Sato K (2008) Effect of temperature on fracture toughness in a single-crystal-silicon film and transition in its fracture mode. J Micromech Microeng 18:15026

    Article  Google Scholar 

  • Park HS, Klein PA (2008) A surface Cauchy–Born model for silicon nanostructures. Comput Methods Appl Mech Eng 197:3249–3260

    Article  Google Scholar 

  • Petersen KE (1982) Silicon as a mechanical material. Proc IEEE 70:420–457

    Article  Google Scholar 

  • Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  Google Scholar 

  • Qian J, Li S (2010) Application of multiscale cohesive zone model to simulate fracture in polycrystalline solids. J Eng Mater Technol 133:11010

    Article  Google Scholar 

  • Raghunathan AV, Park JH, Alurua NR (2007) Interatomic potential-based semiclassical theory for Lennard-Jones fluids. J Chem Phys 127:174701

    Article  Google Scholar 

  • Shegal J, Ito S (1998) A new low-brittleness glass in the soda-lime-silica glass family. J Am Ceram Soc 81:2485–2488

    Article  Google Scholar 

  • Shet C, Chandra N (2002) Analysis of energy balance when using cohesive zone models to simulate fracture processes. J Eng Mater Technol 124:440–450

    Article  Google Scholar 

  • Siling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48:175–209

    Article  Google Scholar 

  • Siling SA, Eptom M, Weckner O, Xu J, Askari A (2007) Peridynamics states and constitutive modeling. J Elast 88:51–184

    Google Scholar 

  • Stillinger FH, Weber TA (1985) Computer simulation of local order in condensed phases of silicon. Phys Rev B 31:5262–5271

    Article  Google Scholar 

  • Sundararajan S, Bhushan B (2002) Development of AFM-based techniques to measure mechanical properties of nanoscale structures. Sens Actuators A Phys 101:338–351

    Article  Google Scholar 

  • Sunyk R, Steinmann P (2003) On higher gradients in continuum-atomistic modelling. Int J Solids Struct 40(24):6877–6896

    Article  Google Scholar 

  • Swiler TP, Simmons JH, Wright AC (1995) Molecular dynamics study of brittle fracture in silica glass and cristobalite. J Non Cryst Solids 182:68–77

    Article  Google Scholar 

  • Tadmor EB, Miller RE (2011) Modeling materials—continuum, atomistic and multiscale technologies. cambridge University Press, Cambridge

    Book  Google Scholar 

  • Tadmor EB, Smith GS, Bernstein N, Kaxiras E (1999) Mixed finite element and atomistic formulation for complex crystals. Phys Rev B 59:235–245

    Article  Google Scholar 

  • Tamai J, Chen I-W, Yamamoto Y, Komatsu M, Komeya K, Kim DK, Wakihara T, Meguro T (2006) Fracture resistance and contact damage of TiN particle reinforced Si\(_3\)N\(_4\) ceramics. J Ceram Soc Jpn 114:1049–1053

    Article  Google Scholar 

  • Tang Z, Zhao H, Li G, Aluru NR (2006) Finite-temperature quasicontinuum method for multiscale analysis of silicon nanostructures. Phys Rev B 74:64110

    Article  Google Scholar 

  • Terao R, Tatami J, Meguro T, Komeya K (2002) Fracture behavior of AlN ceramics with rare earth oxides. J Eur Ceram Soc 22:1051–1059

    Article  Google Scholar 

  • Tersoff J (1988) New empirical approach for the structure and energy of covalent systems. Phys Rev B 37:6991–6999

    Article  Google Scholar 

  • Tersoff J (1988) Empirical interatomic potential for silicon with improved elastic properties. Phys Rev B 38:9902–9905

    Article  Google Scholar 

  • Tersoff J (1989) Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 39:5566–5568

    Article  Google Scholar 

  • Varshneya AK (2010) Chemical strengthening of glass: lessons learned and yet to be learned. Int J Appl Glass Sci 1:131–142

    Article  Google Scholar 

  • Volokh KY (2004) Comparison between cohesive zone models. Commun Numer Methods Eng 20:845–856

    Article  Google Scholar 

  • Wong B, Holbrook RJ (1987) Microindentation for fracture and stresscorrosion cracking studies in singlecrystal silicon. J Electrochem Soc 134:2254–2256

    Article  Google Scholar 

  • Xu XP, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434

    Article  Google Scholar 

  • Zeng X, Li S (2010) A multiscale cohesive zone model and simulations of fractures. Comput Methods Appl Mech Eng 199:547–556

    Article  Google Scholar 

  • Zeng X, Li S (2012) Application of a multiscale cohesive zone method to model composite materials. Int J Multiscale Comput Eng 10:391–405

    Article  Google Scholar 

Download references

Acknowledgments

Dr. S. Urata is sponsored by Asahi Glass Co., Ltd. Japan, and this support is greatly appreciated. The authors gratefully acknowledge helpful discussions with Ms. D. Lyu and Dr. H. Fan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaofan Li.

Appendix

Appendix

1.1 Appendix 1: Optimization of inner vector of diamond cubic lattice

First, we document the procedure on how to find the inner vector \(\mathbf{v}\) position based on strain energy minimization.

In order to satisfy Eq. (40), we use Newton’s method,

$$\begin{aligned}&{} \mathbf{v}^{i+1} = \mathbf{v}^{i} + \delta \mathbf{v} \end{aligned}$$
(70)
$$\begin{aligned}&\delta \mathbf{v} = \Bigl ( { \partial ^2 V \over \partial \mathbf{v}^2 } \Bigr )^{-1} \Bigl ( { \partial V \over \partial \mathbf{v} } \Bigr )~. \end{aligned}$$
(71)

Then, similar to Eq. (41), one may find that

$$\begin{aligned}&{ \partial V \over \partial \mathbf{v} } = {1 \over 2 \varOmega _0} \sum _{j = 2}^5 \Bigl ( { \partial V_{1j} \over \partial \mathbf{v} } \Bigl ) \nonumber \\&\quad = {1 \over 2 \varOmega _0} \sum _{j = 2}^5 \Bigl [ { \partial V_{1j} \over \partial r_{1j} } { \partial r_{1j} \over \partial \mathbf{v} } \nonumber \\&\qquad + \sum _{k = 2, j \ne k}^5 \Bigl ( { \partial V_{1j} \over \partial r_{1k} } { \partial r_{1k} \over \partial \mathbf{v} } + { \partial V_{1j} \over \partial cos \theta _{1jk} } { \partial cos \theta _{1jk} \over \partial \mathbf{v} } \Bigr ) \Bigr ]\nonumber \\ \end{aligned}$$
(72)

where

$$\begin{aligned}&{ \partial cos \theta _{1jk} \over \partial \mathbf{v} } = { \partial r_{1j} \over \partial \mathbf{v} } { \partial cos \theta _{1jk} \over \partial r_{1j} } + { \partial r_{1k} \over \partial \mathbf{v} } { \partial cos \theta _{1jk} \over \partial r_{1k} } \nonumber \\&\qquad +\, { \partial r_{jk} \over \partial \mathbf{v} } { \partial cos \theta _{1jk} \over \partial r_{jk} } \nonumber \\&\quad = \Bigl ( {1 \over r_{1k} } - {cos \theta _{1jk} \over r_{1j} } \Bigr ) { \partial r_{1j} \over \partial \mathbf{v} } +\Bigl ( {1 \over r_{1j} } - {cos \theta _{1jk} \over r_{1k} } \Bigr ) { \partial r_{1k} \over \partial \mathbf{v} }\nonumber \\&\qquad -\Bigl ( { r_{jk} \over r_{1j} r_{i1k} } \Bigr ) { \partial r_{jk} \over \partial \mathbf{v} } \end{aligned}$$
(73)

and

$$\begin{aligned} \displaystyle { \partial r_{ij} \over \partial \mathbf{v} } = \left\{ \begin{array}{ll} \displaystyle { \partial r_{1j} \over \partial \mathbf{r}_{1j} } \displaystyle { \partial \mathbf{r}_{1j} \over \partial \mathbf{v} } = - \displaystyle { \mathbf{r}_{1j} \over r_{1j} } &{} i, j \in ~\alpha ,~ \mathrm{or } ~ i, j \in \beta \\ 0 &{} \mathrm{otherwise} \end{array} \right. \nonumber \\ \end{aligned}$$
(74)

For the second derivative,

$$\begin{aligned}&{ \partial ^2 V \over \partial \mathbf{v}^2 } = {1 \over 2 \varOmega _0} \sum _{j = 2}^5 \Bigl ( { \partial ^2 V_{1j} \over \partial \mathbf{v}^2 } \Bigl ) \nonumber \\&\quad = {1 \over 2 \varOmega _0} \sum _{j = 2}^5 \biggl [ { \partial ^2 V_{1j} \over \partial r_{1j}^2 } { \partial r_{1j} \over \partial \mathbf{v} } { \partial r_{1j} \over \partial \mathbf{v} } + { \partial V_{1j} \over \partial r_{1j} } { \partial ^2 r_{1j} \over \partial \mathbf{v}^2 } \nonumber \\&\qquad + \sum _{k = 2, j \ne k}^5 \Bigl \{ { \partial V_{1j}^2 \over \partial r_{1k}^2 } { \partial r_{1k} \over \partial \mathbf{v} } { \partial r_{1k} \over \partial \mathbf{v} } + { \partial V_{1j} \over \partial r_{1k} } { \partial ^2 r_{1k} \over \partial \mathbf{v}^2 } \nonumber \\&\qquad + { \partial V_{1j}^2 \over \partial cos \theta _{1jk}^2 } { \partial cos \theta _{1jk} \over \partial \mathbf{v} } { \partial cos \theta _{1jk} \over \partial \mathbf{v} } + { \partial V_{1j} \over \partial cos \theta _{1jk} } { \partial ^2 cos \theta _{1jk} \over \partial \mathbf{v}^2 } \Bigr \} \biggr ]\nonumber \\ \end{aligned}$$
(75)
$$\begin{aligned}&{\partial ^2 cos\theta _{1jk} \over \partial \mathbf{v}^2} = \Bigl ( {1 \over r_{1k} } - {cos\theta _{1jk} \over r_{1j} } \Bigr ) {\partial ^2 r_{1j} \over \partial \mathbf{v}^2 } + \Bigl ( {1 \over r_{1j} } - {cos\theta _{1jk} \over r_{1k} }\Bigr ) {\partial ^2 r_{1k} \over \partial \mathbf{v}^2 } \nonumber \\&\quad + \Bigl ( -{1 \over r_{1k}^2 } {\partial r_{1k} \over \partial \mathbf{v} } - {\partial cos\theta _{1jk} \over \partial \mathbf{v} } {1 \over r_{1j} } + {cos\theta _{1jk} \over r_{1j}^2 } {\partial r_{1j} \over \partial \mathbf{v} } \Bigr ) {\partial r_{1j} \over \partial \mathbf{v}} \nonumber \\&\quad + \Bigl ( -{1 \over r_{1j}^2 } {\partial r_{1j} \over \partial \mathbf{v} } - {\partial cos\theta _{1jk} \over \partial \mathbf{v} } {1 \over r_{1k} } + {cos\theta _{1jk} \over r_{1k}^2 } {\partial r_{1k} \over \partial \mathbf{v} } \Bigr ) {\partial r_{1k} \over \partial \mathbf{v}} \end{aligned}$$
(76)

where the following relation,

$$\begin{aligned} \displaystyle { \partial ^2 r_{ij} \over \partial \mathbf{v}^2 } = \left\{ \begin{array}{lcl} \displaystyle {\partial \over \partial \mathbf{v} } \Bigl ( - \displaystyle { \mathbf{r}_{ij} \over r_{ij} } \Bigr ) = \displaystyle {1 \over r_{1j}} \Bigr ( \mathbf{I} - { \mathbf{r}_{ij} \displaystyle \mathbf{r}_{ij} \over r_{ij}^2 } \Bigl ), &{}&{} i, j \in \alpha ~{ \mathrm or }~,~ i, j \in \beta \\ 0 , &{}&{} \mathrm{otherwise} \end{array} \right. \nonumber \\ \end{aligned}$$
(77)

and Eqs. (56)–(59) are applied.

1.2 Appendix 2: Divergence of the second order stress tensor

Second, we show how to find the divergence of the second order stress tensor based on the higher Cauchy–Born rule for the Tersoff potential.

According to Eqs. (50)–(53), we have,

$$\begin{aligned}&\nabla _X \cdot \mathbf{Q} = {1 \over 2 \varOmega _0} \sum _{j = 2}^5 \Biggl [ \nabla _X \Bigl ( { \partial V_{1j} \over \partial r_{1j} } { 1 \over 2r_{1j} } \Bigr ) \mathbf{r}_{1j} \otimes \mathbf{R}_{1j} \otimes \mathbf{R}_{1j} \nonumber \\&\quad + \Bigl ( { \partial V_{1j} \over \partial r_{1j} } { 1 \over 2r_{1j} } \Bigr ) \nabla _X \cdot ( \mathbf{r}_{1j} \otimes \mathbf{R}_{1j} \otimes \mathbf{R}_{1j} ) \nonumber \\&\quad + \sum _{k =2, k \ne j}^5 \biggl [ \nabla _X \Bigl ( { \partial V_{1j} \over \partial r_{1k} } { 1 \over 2r_{1k} } \Bigr ) \mathbf{r}_{1k} \otimes \mathbf{R}_{1k} \otimes \mathbf{R}_{1k} \nonumber \\&\quad + \Bigl ( { \partial V_{1j} \over \partial r_{1k} } { 1 \over 2r_{1k} } \Bigr ) \nabla _X \cdot ( \mathbf{r}_{1k} \otimes \mathbf{R}_{1k} \otimes \mathbf{R}_{1k} ) \nonumber \\&\quad + \nabla _X \Bigl \{ \Bigl ( {\partial V_{1j} \over \partial cos \theta } {1 \over 2r_{1j} } \Bigr ) \Bigl ( {1 \over r_{1k}} - {cos \theta \over r_{1j} } \Bigr ) \Bigr \} \mathbf{r}_{1j} \otimes \mathbf{R}_{1j} \otimes \mathbf{R}_{1j} \nonumber \\&\quad + \Bigl \{ \Bigl ( {\partial V_{1j} \over \partial cos \theta } {1 \over 2r_{1j} } \Bigr ) \Bigl ( {1 \over r_{1k}} - {cos \theta \over r_{1j} } \Bigr ) \Bigr \} \nabla _X \cdot ( \mathbf{r}_{1j} \otimes \mathbf{R}_{1j} \otimes \mathbf{R}_{1j} ) \nonumber \\&\quad + \nabla _X \Bigl \{ {\partial V_{1j} \over \partial cos \theta } {1 \over 2r_{1k} } \Bigl ( {1 \over r_{1j}} - {cos \theta \over r_{1k} } \Bigr ) \Bigr \} \mathbf{r}_{1k} \otimes \mathbf{R}_{1k} \otimes \mathbf{R}_{1k} \nonumber \\&\quad + \Bigl \{ {\partial V_{1j} \over \partial cos \theta } {1 \over 2r_{1k} } \Bigl ( {1 \over r_{1j}} - {cos \theta \over r_{1k} } \Bigr ) \Bigr \} \nabla _X \cdot ( \mathbf{r}_{1k} \otimes \mathbf{R}_{1k} \otimes \mathbf{R}_{1k} ) \nonumber \\&\quad - \nabla _X \Bigl \{ {\partial V_{1j} \over \partial cos \theta } {1 \over 2r_{jk} } \Bigl ( {r_{jk} \over r_{1j} r_{1k} } \Bigr ) \Bigr \} \mathbf{r}_{jk} \otimes \mathbf{R}_{jk} \otimes \mathbf{R}_{jk} \nonumber \\&\quad - \Bigl \{ {\partial V_{1j} \over \partial cos \theta } {1 \over 2r_{jk} } \Bigl ( {r_{jk} \over r_{1j} r_{1k} } \Bigr ) \Bigr \} \nabla _X \cdot ( \mathbf{r}_{jk} \otimes \mathbf{R}_{jk} \otimes \mathbf{R}_{jk} ) \biggr ] \Biggr ] \end{aligned}$$
(78)

and based on the above equation, we can write the following expressions with abbreviating index,

$$\begin{aligned}&\nabla _X \Bigl ( { \partial V \over \partial r } { 1 \over 2r } \Bigr ) \mathbf{r} \otimes \mathbf{R} \otimes \mathbf{R} + \Bigl ( { \partial V \over \partial r } { 1 \over 2r } \Bigr ) \nabla _X \cdot ( \mathbf{r} \otimes \mathbf{R} \otimes \mathbf{R} ) \nonumber \\&\quad = \bigg [ {\partial \over \partial X_C} \Bigl ( { \partial V \over \partial r } { 1 \over 2r } \Bigr ) + \Bigl ( { \partial V \over \partial r } { 1 \over 2r } \Bigr ) {\partial \over \partial X_C} \biggr ] r_a R_A R_B (\mathbf{e}_a \otimes \mathbf{E}_A \otimes \mathbf{E}_B ) \cdot \mathbf{E}_C \nonumber \\&\quad = \bigg [ {\partial \over \partial r} {\partial r \over \partial F} {\partial F \over \partial X_B} \Bigl ( { \partial V \over \partial r } { 1 \over 2r } \Bigr ) \!+\! \Bigl ( { \partial V \over \partial r } { 1 \over 2r } \Bigr ) {\partial \over \partial r} {\partial r \over \partial F} {\partial F \over \partial X_B} \biggr ] r_a R_A R_B (\mathbf{e}_a \!\otimes \! \mathbf{E}_A ) \nonumber \\&\quad = { 1 \over 2 } { \partial ^2 V \over \partial r^2 } R_a G_B R_A R_B = { \partial ^2 V \over \partial r^2 } \mathbf{R} \otimes \mathbf{r}^{2nd} \end{aligned}$$
(79)

Here, \( \mathbf{r}^{2nd} \) is the additional term in atom coordination [see Eq. (27)] owing to second order deformation. And, an example for the angle term is,

$$\begin{aligned}&\nabla _X \biggl [ \Bigr ( {\partial V_{1j} \over \partial cos \theta } {1 \over 2r_{1j} } \Bigl ) \Bigr ( { 1 \over r_{1k}} - {cos \theta \over r_{1j} } \Bigl ) \biggr ] \mathbf{r}_{1j} \otimes \mathbf{R}_{1j} \otimes \mathbf{R}_{1j} \nonumber \\&\quad = {\partial \over \partial cos \theta } \biggl [ \Bigr ( {\partial V_{1j} \over \partial cos \theta } {1 \over 2r_{1j} } \Bigl ) \Bigr ( { 1 \over r_{1k}} - {cos \theta \over r_{1j} } \Bigl ) \biggr ] \nonumber \\&\qquad \times {\partial cos \theta \over \partial F } {\partial F \over \partial X_B} r_{1j}^a R_{1j}^A R_{1j}^B ( \mathbf{e}_a \otimes \mathbf{E}_A) \nonumber \\&\quad = \biggl [ \Bigr ( {\partial ^2 V_{1j} \over \partial cos^2 \theta } {1 \over 2r_{1j} } \Bigl ) \Bigr ( { 1 \over r_{1k}} - {cos \theta \over r_{1j} } \Bigl ) - \Bigr ( {\partial V_{1j} \over \partial cos \theta } {1 \over 2r_{1j} } \Bigl ) { 1 \over r_{1j} } \biggr ] \nonumber \\&\quad {\partial cos \theta \over \partial F } G_B r_{1j}^a R_{1j}^A R_{1j}^B ( \mathbf{e}_a \otimes \mathbf{E}_A ), \end{aligned}$$
(80)

where \(\partial cos \theta / \partial \mathbf{F} \) has shown in Eq. (43), and

$$\begin{aligned}&{\partial V_{1j} \over \partial cos \theta } {1 \over 2r_{1j} } \Bigl ( {1 \over r_{1k}} - {cos \theta \over r_{1j} } \Bigr ) \nabla _X \cdot ( \mathbf{r}_{1j} \otimes \mathbf{R}_{1j} \otimes \mathbf{R}_{1j} ) \nonumber \\&\quad = {\partial V_{1j} \over \partial cos \theta } {1 \over 2r_{1j} } \Bigl ( {1 \over r_{1k}} - {cos \theta \over r_{1j} } \Bigr ) {\partial \over \partial r} {\partial r \over \partial F} {\partial F \over \partial X_B} r_{1j}^a R_{1j}^A R_{1j}^B (\mathbf{e}_a \otimes \mathbf{E}_A ) \nonumber \\&\quad = {\partial V_{1j} \over \partial cos \theta } {1 \over 2r_{1j} } \Bigl ( {1 \over r_{1k}} - {cos \theta \over r_{1j} } \Bigr ) {r_{1j}^a R_{1j}^a \over r_{1j}} {r_{1j}^a \over r_{1j} } G_B R_{1j}^A R_{1j}^B (\mathbf{e}_a \otimes \mathbf{E}_A ) \nonumber \\&\quad = {\partial V_{1j} \over \partial cos \theta } {1 \over r_{1j} } \Bigl ( {1 \over r_{1k}} - {cos \theta \over r_{1j} } \Bigr ) \mathbf{R}_{1j} \otimes \mathbf{r}_{1j}^{2nd}~. \end{aligned}$$
(81)
Fig. 23
figure 23

Fifteen nodes of isoparametric triangular prism element and a bubble node. Red circle is the point of a bubble node

1.3 Appendix 3: Second order shape function with a bubble mode

Second order shape function for wedge element with a bubble node in the center of element. Node positions are illustrated in Fig. 23.

$$\begin{aligned} N_1= & {} -{1 \over 2} ( 1 - \xi - \eta ) ( 2 \xi + 2\eta + \zeta ) ( 1 - \zeta ) - {1 \over 15} N_{16} \nonumber \\ N_2= & {} {1 \over 2} \xi ( 2 \xi - \zeta - 2 ) ( 1 - \zeta ) - {1 \over 15} N_{16} \nonumber \\ N_3= & {} {1 \over 2} \eta ( 2 \xi - \zeta - 2 ) ( 1 - \zeta )- {1 \over 15} N_{16} \nonumber \\ N_4= & {} - {1 \over 2} ( 1 - \xi - \eta ) ( 2 \xi + 2 \eta - \zeta ) ( 1 + \zeta ) - {1 \over 15} N_{16} \nonumber \\ N_5= & {} {1 \over 2} \xi ( 2 \xi + \zeta - 2 ) ( 1 + \zeta ) - {1 \over 15} N_{16} \nonumber \\ N_6= & {} {1 \over 2} \eta ( 2 \eta + \zeta -2 ) ( 1 + \zeta ) - {1 \over 15} N_{16} \nonumber \\ N_7= & {} 2 \xi ( 1 - \xi - \eta ) ( 1 - \zeta ) - {1 \over 15} N_{16} \nonumber \\ N_8= & {} 2 \xi \eta ( 1 - \zeta ) - {1 \over 15} N_{16} \nonumber \\ N_9= & {} 2 \eta ( 1 - \xi - \eta ) ( 1 - \zeta ) - {1 \over 15} N_{16} \nonumber \\ N_{10}= & {} 2 \xi ( 1 - \xi - \eta ) ( 1 + \zeta ) - {1 \over 15} N_{16} \nonumber \\ N_{11}= & {} 2 \xi \eta ( 1 + \zeta ) - {1 \over 15} N_{16} \nonumber \\ N_{12}= & {} 2 \eta ( 1 - \xi - \eta ) ( 1 + \zeta ) - {1 \over 15} N_{16} \nonumber \\ N_{13}= & {} ( 1 - \xi - \eta ) ( 1 - \zeta ^2 ) - {1 \over 15} N_{16} \nonumber \\ N_{14}= & {} \xi ( 1 - \zeta ^2 ) - {1 \over 15} N_{16} \nonumber \\ N_{15}= & {} \eta ( 1 - \zeta ^2 ) - {1 \over 15} N_{16} \nonumber \\ N_{16}= & {} {19683 \over 4096} \xi \eta ( 1 - \xi - \eta )(2\xi + 2\eta \nonumber \\&+ \zeta )(2\xi - \zeta -2)(2\eta - \zeta -2)\nonumber \\&\quad (2\xi + 2\eta -\zeta ) \nonumber \\&\quad (2\xi + \zeta -2)(2\eta + \zeta -2) ( 1 - \zeta ^2 ) \end{aligned}$$
(82)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urata, S., Li, S. Higher order Cauchy–Born rule based multiscale cohesive zone model and prediction of fracture toughness of silicon thin films. Int J Fract 203, 159–181 (2017). https://doi.org/10.1007/s10704-016-0147-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-016-0147-1

Keywords

Navigation