Skip to main content

Advertisement

Log in

Modelling Internal Solitary Waves in the Coastal Ocean

  • Review Article
  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

In the coastal oceans, the interaction of currents (such as the barotropic tide) with topography can generate large-amplitude, horizontally propagating internal solitary waves. These waves often occur in regions where the waveguide properties vary in the direction of propagation. We consider the modelling of these waves by nonlinear evolution equations of the Korteweg–de Vries type with variable coefficients, and we describe how these models are used to describe the shoaling of internal solitary waves over the continental shelf and slope. The theories are compared with various numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Apel JR (1995) Linear and nonlinear internal waves in coastal and marginal seas. In: Ikeda M, Dobson F (eds) Oceanographic application of remote sensing. CRC Press, Boca Raton Florida, pp 57–78

    Google Scholar 

  • Apel JR, Ostrovsky LA, Stepanyants YA, Lynch JF (2007) Internal solitons in the ocean and their effect on underwater sound. J Acoust Soc Am 121:695–722

    Article  Google Scholar 

  • Benney DJ (1966) Long non-linear waves in fluid flows. J Math Phys 45:52–63

    Google Scholar 

  • Boussinesq MJ (1871) Theórie de l’intumescence liquide appellée onde solitaire ou de translation, se propageant dans un canal rectangulaire. Comptes Rendus Acad Sci (Paris) 72:755–759

    Google Scholar 

  • Cai S, Long X, Gan Z (2002) A numerical study of the generation and propagation of internal solitary waves in the Luzon Strait. Oceanol Acta 25:51–60

    Article  Google Scholar 

  • Clarke S, Grimshaw R, Miller P, Pelinovsky E, Talipova T (2000) On the generation of solitons and breathers in the modified Korteweg–de Vries equation. Chaos 10:383–392

    Article  Google Scholar 

  • Djordjevic V, Redekopp L (1978) The fission and disintegration of internal solitary waves moving over two-dimensional topography. J Phys Ocean 8:1016–1024

    Article  Google Scholar 

  • Drazin PG, Johnson RS (1989) Solitons: an introduction. CUP, Cambridge

    Google Scholar 

  • Duda TF, Lynch JF, Irish JD, Beardsley RC, Ramp SR, Chiu C-S, Tang TY, Yang Y-J (2004) Internal tide and nonlinear internal wave behavior at the continental slope in the northern south China Sea. IEEE J Oceanic Eng 29:1105–1130

    Article  Google Scholar 

  • Egorov YuA (1993) Evolution of long nonlinear gravity waves on shelves. Int J Offshore Polar Eng 3:1–6

    Google Scholar 

  • El GA, Grimshaw R (2002) Generation of undular bores in the shelves of slowly-varying solitary waves. Chaos 12:1015–1026

    Article  Google Scholar 

  • Grimshaw R (1979) Slowly varying solitary waves. I Korteweg-de Vries equation. Proc Roy Soc 368A:359–375

    Article  Google Scholar 

  • Grimshaw R (1981) Evolution equations for long nonlinear internal waves in stratified shear flows. Stud Appl Math 65:159–188

    Google Scholar 

  • Grimshaw R (1984) Wave action and wave-mean flow interaction, with application to stratified shear flows. Ann Rev Fluid Mechanics 16:11–43

    Article  Google Scholar 

  • Grimshaw R (2001) Internal solitary waves. In: Grimshaw R (ed) Environmental stratified flows, chapter 1. Kluwer, Boston, pp 1–28

    Google Scholar 

  • Grimshaw R (2005) Korteweg–de Vries equation. In: Grimshaw R (ed) Nonlinear waves in fluids: recent advances and modern applications, CISM Courses and Lectures No 483, Springer, Wien New York, Chapter 1:1–28

  • Grimshaw R, Mitsudera H (1993) Slowly-varying solitary wave solutions of the perturbed Korteweg–de Vries equation revisited. Stud Appl Math 90:75–86

    Google Scholar 

  • Grimshaw R, Pelinovsky E, Talipova T (1998a) Solitary wave transformation due to a change in polarity. Stud Appl Math 101:357–388

    Article  Google Scholar 

  • Grimshaw R, Ostrovsky LA, Shrira VI, Stepanyants Yu A (1998b) Nonlinear surface and internal gravity waves in a rotating ocean. Surv Geophys 19:289–338

    Article  Google Scholar 

  • Grimshaw R, Pelinovsky E, Talipova T (1999) Solitary wave transformation in a medium with sign-variable quadratic nonlinearity and cubic nonlinearity. Physica D 132:40–62

    Article  Google Scholar 

  • Grimshaw R, Pelinovsky E, Poloukhina O (2002) Higher-order Korteweg–de Vries models for internal solitary waves in a stratified shear flow with a free surface. Nonlinear Process Geophys 9:221–235

    Google Scholar 

  • Grimshaw R, Pelinovsky E, Talipova T (2003) Damping of large-amplitude solitary waves. Wave Motion 37:351–364

    Article  Google Scholar 

  • Grimshaw RHJ, Pudjaprasetya SR (2004). Generation of secondary solitary waves in the variable-coefficient Korteweg-de Vries equation. Stud Appl Maths 112:271–279

    Article  Google Scholar 

  • Grimshaw R, Pelinovsky E, Talipova T, Kurkin A (2004) Simulation of the transformation of internal solitary waves on oceanic shelves. J Phys Ocean 34:2774–2779

    Article  Google Scholar 

  • Grimshaw R, Pelinovsky E, Stepanyants Y, Talipova T (2006) Modelling internal solitary waves on the Australian North West Shelf. Mar Freshwater Res 57:265–272

    Article  Google Scholar 

  • Helfrich KR, Melville WK (2006) Long nonlinear internal waves. Ann Rev Fluid Mech 38:395–425

    Article  Google Scholar 

  • Holloway P, Pelinovsky E, Talipova T, Barnes B (1997) A nonlinear model of the internal tide transformation on the Australian North West Shelf. J Phys Ocean 27:871– 896

    Article  Google Scholar 

  • Holloway P, Pelinovsky E, Talipova T (1999) A generalised Korteweg–de Vries model of internal tide transformation in the coastal zone. J Geophys Res 104:18333–18350

    Article  Google Scholar 

  • Holloway P, Pelinovsky E, Talipova T (2001) Internal tide transformation and oceanic internal solitary waves. In: Grimshaw R (ed) Environmental stratified flows, chapter 2. Kluwer, Boston, pp 29–60

    Google Scholar 

  • Hsu M-K, Liu AK, Liu C (2000) A study of internal waves in the China Seas and Yellow Sea using SAR Cont. Shelf Res 20:389–410

    Article  Google Scholar 

  • Ivanov VA, Pelinovsky EN, Talipova TG, Troitskaya YuI (1994) Statistical estimates of the parameters of nonlinear long internal waves off the South Crimea in the Black Sea. Phys Oceanogr 6:253–262

    Article  Google Scholar 

  • Johnson RS (1972) Some numerical solutions of a variable-coefficient Korteweg–de Vries equation (with applications to solitary wave development on a shelf). J Fluid Mech 54:81–91

    Article  Google Scholar 

  • Johnson RS (1973a) On an asymptotic solution of the Korteweg–de Vries equation with slowly varying coefficients. J Fluid Mech 60:813–824

    Article  Google Scholar 

  • Johnson RS (1973b) On the development of a solitary wave moving over an uneven bottom. Proc Camb Phil Soc 73:183–203

    Article  Google Scholar 

  • Korteweg DJ, de Vries H (1895) On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos Mag 39:422–443

    Google Scholar 

  • Lamb KG (2002) A numerical investigation of solitary internal waves with trapped cores formed via shoaling. J Fluid Mech 451:109–144

    Article  Google Scholar 

  • Lamb KG (2003) Shoaling solitary internal waves: on a criterion for the formation of waves with trapped cores. J Fluid Mech 478:81–100

    Article  Google Scholar 

  • Lamb KG, Yan L (1996) The evolution of internal wave undular bores: comparisons of a fully nonlinear numerical model with weakly nonlinear theory. J Phys Ocean 26:2712–2734

    Article  Google Scholar 

  • Lee CY, Beardsley RC (1974) The generation of long nonlinear internal waves in a weakly stratified shear flow. J Geophys Res 79:453–462

    Google Scholar 

  • Levitus S, Boyer T (1994) Climatological Atlas of the World Ocean 1994. U.S.Department of Commerce, NOAA.

  • Liu AK (1988) Analysis of nonlinear internal waves in the New York Bight. J Geophys Res 93:12317–12329

    Article  Google Scholar 

  • Liu AK, Chang YS, Hsu M-K, Liang NK (1998) Evolution of nonlinear internal waves in the East and South China Seas. J Geophys Res 103:7995–8008

    Article  Google Scholar 

  • Liu AK, Ramp SR, Zhao Y, Tswen Yung Tang TY (2004) A case study of internal solitary wave propagation during ASIAEX 2001. IEEE J Oceanic Eng 29:1144–1156

    Article  Google Scholar 

  • Maslowe SA, Redekopp LG (1980) Long nonlinear waves in stratified shear flows. J Fluid Mech 101:321–348

    Article  Google Scholar 

  • Nakoulima O, Zahibo N, Pelinovsky E, Talipova T, Slunyaev, A, Kurkin A (2004) Analytical and numerical studies of the variable-coefficient Gardner equation. Appl Math Comp 152:449–471

    Article  Google Scholar 

  • Orr MH, Mignerey PC (2003) Nonlinear internal waves in the South China Sea: observation of the conversion of depression internal waves to elevation internal waves. J Geophys Res 108(C3):9-1–9-16

    Article  Google Scholar 

  • Ostrovsky LA (1978) Nonlinear internal waves in rotating fluids. Oceanology 18:181–191

    Google Scholar 

  • Ostrovsky LA, Pelinovsky EN (1970) Wave transformation on the surface of a fluid of variable depth. Akad Nauk SSSR, Izv Atmos Ocean Phys 6:552–555

    Google Scholar 

  • Ostrovsky LA, Stepanyants YA (2005) Internal solitons in laboratory experiments: comparison with theoretical models. Chaos 15:037111

    Article  Google Scholar 

  • Pelinovsky D, Grimshaw RHJ (1997) Structural transformation of eigenvalues for a perturbed algebraic soliton potential. Phys Lett A 229:165–172

    Article  Google Scholar 

  • Pelinovsky E, Talipova T, Ivanov V (1995) Estimations of nonlinear properties of internal wave field off the Israel coast. Nonlinear Process Geophys 2:80–88

    Google Scholar 

  • Poloukhina O, Poloukhin N, Talipova T, Pelinovsky E, Grimshaw R, Lamb K, Muyakshin S (2002). Modelling of large-amplitude internal waves in the ocean. In: Litvak AG (ed) Proceedings of the international conference dedicated tp the 100th anniversary of A.A. Andronov; Progress in nonlinear science, vol II, Frontiers of Nonlinear Physics, Inst. Applied Physics, Nizhny Novgorod, pp 252–257

  • Poloukhin NV, Talipova TG, Pelinovsky EN, Lavrenov IV (2003) Kinematic characteristics of the high-frequency internal wave field in the Arctic Ocean. Oceanology 43:356–367

    Google Scholar 

  • Poloukhin NV, Pelinovsky EN, Talipova TG, Muyakshin SI (2004) On the effect of shear currents on the vertical structure and kinematic parameters of internal waves. Oceanology 44:22–29

    Google Scholar 

  • Ramp SR, Tang TY, Duda TF, Lynch JF, Liu AK, Chiu C-S, Bahr FL, Kim H-R, Yang Y-J (2004) Internal solitons in the northeastern South China Sea. Part I: sources and deep water propagation. IEEE J Oceanic Eng. 29:1157–1181

    Article  Google Scholar 

  • Rayleigh JWS (1876) On waves. Phil Mag 1:257–279

    Google Scholar 

  • Russell JS (1844) Report on waves 14th meeting of the British Association for the advancement of science. pp 311–390

  • Salusti F, Lascaratos A, Nittis K (1989) Changes of polarity in marine internal waves: field evidence in eastern Mediterranean Sea. Ocean Modelling 82:10–11

    Google Scholar 

  • Small J (2001a) A nonlinear model of the shoaling and refraction of interfacial solitary waves in the ocean. Part I: Development of the model and investigations of the shoaling effect. J Phys Ocean 31:3163–3183

    Google Scholar 

  • Small J (2001b) A nonlinear model of the shoaling and refraction of interfacial solitary waves in the ocean. Part II: Oblique refraction across a continental slope and propagation over a seamount. J Phys Ocean 31:3184–3199

    Article  Google Scholar 

  • Small J (2003) Refraction and shoaling of nonlinear internal waves at the Malin Shelf Break. J Phys Ocean 33:2657–2674

    Article  Google Scholar 

  • Small RJ, Hornby RP (2005) A comparison of weakly and fully non-linear models of the shoaling of a solitary internal wave Ocean Modelling 8:395–416

    Google Scholar 

  • Talipova T, Pelinovsky E, Kouts T (1998) Kinematic characteristics of an internal wave field in the Gotland Deep in the Baltic Sea. Oceanology 38:33–42

    Google Scholar 

  • Tappert FD, Zabusky NJ (1971) Gradient-induced fission of solitons. Phys Rev Lett 27:1774–1776

    Article  Google Scholar 

  • Tung KK, Ko DRS, Chang JJ (1981) Weakly nonlinear internal waves in shear. Stud Appl Math 65:189–221

    Google Scholar 

  • Vlasenko VI, Hutter K (2002) Numerical experiments on the breaking of solitary internal waves over a slope–shelf topography. J Phys Ocean 32:1779–1793

    Article  Google Scholar 

  • Vlasenko VI, Stashchuk NM, Hutter K (2005) Baroclinic tides: theoretical modelling and observational evidence. Cambridge University Press, Cambridge

    Google Scholar 

  • Vlasenko VI, Ostrovsky LA, Hutter K (2006) Adiabatic behaviour of strongly nonlinear internal solitary waves in slope-shelf areas. J Geophys Res 110:C04006

    Article  Google Scholar 

  • Vlasenko VI, Stashchuk NM (2006) Amplification and suppression of internal waves by tides over variable bottom topography. J Phys Ocean 36:1959–1973

    Article  Google Scholar 

  • Yang Y-J, Tang TY, Chang MH, Liu AK, Hsu M-K, Ramp SR (2004) Solitons northeast of Tung-Sha Island during the ASIAEX pilot studies. IEEE J Oceanic Eng 29:1182–1199

    Article  Google Scholar 

  • Zheng Q, Klemas V, Yan X-H, Pan J (2001) Nonlinear evolution of ocean internal solitons propagating along an inhomogeneous thermocline. J Geophy Res 106:14083–14094

    Article  Google Scholar 

  • Zheng Q, Klemas V, Zheng Q, Yan X-H (2003) Satellite observation of internal solitary waves converting polarity. Geophys Res Lett 30(19):4–1

    Google Scholar 

  • Zhou X, Grimshaw R (1989) The effect of variable currents on internal solitary waves. Dyn Atmos Oceans 14:17–39

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from INTAS project, 06-1000013-9236, and from RFBR, 06-05-64232, for Talipova.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Grimshaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimshaw, R., Pelinovsky, E. & Talipova, T. Modelling Internal Solitary Waves in the Coastal Ocean. Surv Geophys 28, 273–298 (2007). https://doi.org/10.1007/s10712-007-9020-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-007-9020-0

Keywords

Navigation