Skip to main content

Advertisement

Log in

Desmids (Zygnematophyceae, Streptophyta) community drivers and potential as a monitoring tool in South American peat bogs

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Tierra del Fuego Island hosts the largest area of peatlands in the Southern Hemisphere, largely encompassing peat bogs where peat is actively formed and thus acting as carbon sinks. Under a scenario of increasing human pressure, the development of scientific tools for the characterization and monitoring of these systems is highly relevant. Desmids have been used as bioindicators in wetlands on account of their high sensitivity to changes in the environment. Here we identified the main drivers of periphytic and planktonic desmid communities in two Fuegian peat bogs, hosting two types of aquatic environments: clear and vegetated pools. Although peat bogs differed in overall species richness and diversity for both communities, some clear trends were detected regarding their dependence on environmental conditions. Unexpectedly, the taxonomic composition of the periphytic desmids did not depend on the substrate. Instead, their diversity and species richness changed along a minero-ombrotrophic gradient. As for planktonic desmids, their abundance and life strategy jointly changed from few large-sized species to larger numbers of small-sized species along with terrestrialization stage of the pools. We conclude that both desmid communities can be used complementarily to monitor changes over time in the trophic and terrestrialization status of peat bog pools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Briskaite, R., J. Kostkeviciene & J. R. Naujalis, 2008. Desmids (Chlorophyta, Zygnematophyceae) from the Girutiskis mire complex reserve (East Lithuania). Biologia 63: 907–914.

    Article  Google Scholar 

  • Brook, A. J., 1981. The Biology of Desmids. Botanical Monographs 16. Blackwell, Oxford.

    Google Scholar 

  • Carpenter, S. R., J. J. Cole, M. L. Pace, M. Van de Bogert, D. L. Bade, D. Bastviken, C. M. Gille, J. R. Hodgson, J. F. Kitchell & E. S. Kritzberg, 2005. Ecosystem subsidies: terrestrial support of aquatic food webs from 13C addition to contrasting lakes. Ecology 86: 2737–2750.

    Article  Google Scholar 

  • Clarke, K. R., 1993. Non-parametric multivariate analysis of changes in community structure. Australian Journal of Ecology 18: 117–143.

    Article  Google Scholar 

  • Clarkson, B. R., L. A. Schipper, B. Moyersoen & W. B. Silvester, 2005. Foliar 15N natural abundance indicates phosphorus limitation of bog species. Oecologia 144: 550–557.

    Article  Google Scholar 

  • Coesel, P. F. M., 1975. The relevance of desmids in the biological typology and evaluation of freshwater. Hydrobiological Bulletin 9: 93–101.

    Article  Google Scholar 

  • Coesel, P. F. M., 1982. Structural characteristics and adaptations of desmid communities. Journal of Ecology 70: 163–177.

    Article  Google Scholar 

  • Coesel, P. F. M., 1983. The significance of desmids as indicators of the trophic status of freshwaters. Schweizerische Zeitschrift für Hidrobiologie 45: 388–393.

    CAS  Google Scholar 

  • Coesel, P. F. M., 1986. Structure and dynamics of desmid communities in hydrosere vegetation in a mesotrophic quivering bog. Beih. zur Nova Hedwigia 56: 119–143.

    Google Scholar 

  • Coesel, P. F. M., 2001. A method for quantifying conservation value in lentic freshwater habitats using desmids as indicator organisms. Biodiversity and Conservation 10: 177–187.

    Article  Google Scholar 

  • Coesel, P. F. M., 2003. Desmid flora data as a tool in conservation management of Dutch freshwater wetlands. Biologia Bratislava 58: 717–722.

    Google Scholar 

  • Coesel, P. F. M. & J. Meesters, 2007. Desmids of the Lowlands. KNNV Publishing, Zeist.

    Book  Google Scholar 

  • Coesel, P. F. M. & J. Meesters, 2013. European Flora of the Desmid Genera Staurastrum and Staurodemus. KNNV Publishing, Zeist.

    Book  Google Scholar 

  • Cosandey, F., 1964. La tourbière des Tenasses sur Vevey. Matér Levé géobot de la suisse 45: 1–234.

    Google Scholar 

  • Cottingham, K. L., 1999. Nutrients and zooplankton as multiple stressors of phytoplankton communities: evidence from size structure. Limnology and Oceanography 44: 810–827.

    Article  Google Scholar 

  • DGRH, Dirección General de Recursos Hídricos, 2018. Technical report, note 651/17. Departamento Hidrología y Redes de medición. Secretaría de Ambiente, Desarrollo Sostenible y Cambio climático, Ushuaia, Tierra del Fuego.

  • Fritz, C., G. van Dijk, A. J. P. Smolders, V. A. Pancotto, T. J. T. M. Elzenga, J. G. M. Roelofs & A. P. Grootjans, 2012. Nutrient additions in pristine Patagonian Sphagnum bog vegetation: can phosphorus addition alleviate (the effects of) increased nitrogen loads. Plant Biology 14: 491–499.

    Article  CAS  Google Scholar 

  • García, P., R. D. García, M. C. Marinone, V. Casa, G. González Garraza & G. Mataloni, 2017. Aquatic microinvertebrate abundance and species diversity in peat-bogs of Tierra del Fuego (Argentina). Limnology 18: 85–96.

    Article  Google Scholar 

  • González Garraza, G., G. Mataloni, R. Iturraspe, R. Lombardo, S. Camargo & M. V. Quiroga, 2012. The limnological character of bog pools in relation to meteorological and hydrological features. Mires and Peat 10: 1–14.

    Google Scholar 

  • Goodyer, E., 2014. Quantifying the Desmid Diversity of Scottish Blanket Mires. PhD Thesis University of Aberdeen.

  • Gorham, E., 1991. Northern Peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications 1: 182–195.

    Article  Google Scholar 

  • Grootjans, A., R. Iturraspe, A. Lanting, C. Fritz & H. Joosten, 2010. Ecohydrological features of some contrasting mires in Tierra del Fuego, Argentina. Mires and Peat 6: 1–15.

    Google Scholar 

  • Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 1–9.

    Google Scholar 

  • Irénée-Marie, F. I. C., 1939. Flore desmidiale de la région de Montreal. Laprairie, Canada.

    Google Scholar 

  • Iturraspe, R., 2010. Las turberas de Tierra del Fuego y el Cambio Climático Global. Fundación Humedales/Wetlands International, Buenos Aires.

    Google Scholar 

  • Iturraspe, R. & A. Urciuolo, 2004. Les tourbières de la Terre de Feu en Argentine: un patrimoine natural trèsmenace. Geocarrefour 79: 143–152.

    Article  Google Scholar 

  • John, D. M. & D. B. Williamson, 2007. Important plant areas for freshwater algae. In Brodie, J., D. M. John, I. Tittley, M. J. Holmes & D. B. Williamson. Important Plant Areas for Algae: A Provisional Review of Sites and Areas of Importance for Algae in the United Kingdom. Plantlife International, Salisbury: pp. 46–58.

  • Joosten, H. & D. Clarke, 2002. Wise Use of Mires and Peatlands. Background and Principles Including a Framework for Decision-Making. International Mire Conservation Group/International Peat Society, Finlandia.

    Google Scholar 

  • Kenkel, N. C. & L. Orloci, 1986. Applying metric and nonmetric multidimensional scaling to ecological studies: some new results. Ecology 67: 919–928.

    Article  Google Scholar 

  • Kitner, M., A. Poulíčková, M. Novotný & R. Hájek, 2004. Desmids (Zygnematophyceae) of the spring fens of a part of West Carpathians. Czech Phycology 4: 43–61.

    Google Scholar 

  • Krasznai, E., G. Fehér, G. Borics, G. Várbíró, I. Grigorszky & B. Tóthmérész, 2008. Use of desmids to assess the natural conservation value of a Hungarian oxbow (Malom-Tisza, NE-Hungary). Biologia 63: 928–935.

    Article  Google Scholar 

  • Kruk, C., V. L. M. Huszar, E. T. H. M. Peeters, S. Bonilla, L. Costa, M. Lürling, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627.

    Article  Google Scholar 

  • Küppers, G. C., G. González Garraza, M. V. Quiroga, R. Lombardo, M. C. Marinone, A. Vinocur & G. Mataloni, 2016. Highly diverse planktonic ciliate assemblages characterize minerotrophic and ombrotrophic pools from a Fuegian peat bog (Argentina). Hydrobiologia 773: 117–134.

    Article  Google Scholar 

  • Lara, E., C. Seppey, G. González Garraza, D. Singer, M. V. Quiroga & G. Mataloni, 2015. Molecular diversity of planktonic eukaryotes discriminate minerotrophic and ombrotrophic peatland pools in Tierra del Fuego (Argentina). Journal of Plankton Research 37: 645–655.

    Article  Google Scholar 

  • Lenzenweger, R., 1993. Beitrag zur Kenntnis der Desmidiaceenflora von Feuerland (Argentinien). Achiv für Protistenkunde 143: 143–152.

    Article  Google Scholar 

  • Lepš, J. & P. Šmilauer, 2003. Multivariate analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Lindsay, R. A., D. J. Charman, F. Everingham, R. M. O’. Reilly, M. A. Palmer, T. A. Rowell & D. A. Stroud, 1988. The Flow Country. The peatlands of Caithness and Sutherland. Nature Conservancy Council, Peterborough.

    Google Scholar 

  • Magurran, A. E., 2004. Measuring Biological Diversity. Blackwell, Oxford.

    Google Scholar 

  • Mataloni, G., 1991. Remarks on the distribution and ecology of some desmids from Tierra del Fuego (Argentina). Nova Hedwiga 53: 433–443.

    Google Scholar 

  • Mataloni, G., 1995. Ecological notes on some interesting desmids from Tierra del Fuego (Argentina) peat bogs. Nova Hedwiga 60: 135–144.

    Google Scholar 

  • Mataloni, G., 1999. Ecological studies on algal communities from Tierra del Fuego peat bogs. Hydrobiologia 391: 157–171.

    Article  Google Scholar 

  • Mataloni, G. & G. Tell, 1996. Comparative analysis of the phytoplankton communities of a peat bog from Tierra del Fuego (Argentina). Hydrobiologia 325: 101–112.

    Article  CAS  Google Scholar 

  • Mataloni, G., G. González Garraza & A. Vinocur, 2015. Landscape-driven environmental variability largely determines abiotic characteristics and phytoplankton patterns in peat bog pools (Tierra del Fuego, Argentina). Hydrobiologia 751: 105–125.

    Article  CAS  Google Scholar 

  • Mutinová, P. T., J. Neustupa, S. Bevilacqua & A. Terlizzi, 2016. Host specificity of epiphytic diatom (Bacillariophyceae) and desmid (Desmidiales) communities. Aquatic Ecology 50: 697–709.

    Article  Google Scholar 

  • Negro, A. I., C. De Hoyos & J. J. Aldasoro, 2003. Diatom and desmid relationships with the environment in mountain lakes and mires of NW spain. Hydrobiologia 505: 1–13.

    Article  Google Scholar 

  • Neustupa, J., K. Černá & J. Štastný, 2011. The effects of aperiodic desiccation on the diversity of benthic desmid assemblages in a lowland peat bog. Biodiversity and Conservation 20: 1695–1711.

    Article  Google Scholar 

  • Neustupa, J., K. Černá & J. Štastný, 2012. Spatio-temporal community structure of peat bog benthic desmids on a microscale. Aquatic Ecology 46: 229–239.

    Article  Google Scholar 

  • Neustupa, J., J. Veselá & J. Štastný, 2013. Differential cell size structure of desmids and diatoms in the phytobenthos of peatlands. Hydrobiologia 709: 159–171.

    Article  CAS  Google Scholar 

  • Ngearnpat, N. & Y. Peerapornpisal, 2007. Application of desmid diversity in assessing the water quality of 12 freshwater resources in Thailand. Journal Applied Phycology 19: 667–674.

    Article  Google Scholar 

  • Queimaliños, C. L., B. E. Modenutti & E. B. Balseiro, 1998. Phytoplankton responses to experimental enhancement of grazing pressure and nutrient recycling in a small Andean lake. Freshwater Biology 40: 41–49.

    Article  Google Scholar 

  • Quiroga, M. V., F. Unrein, G. González Garraza, G. C. Küppers, R. Lombardo, M. C. Marinone, S. Menu Marque & G. Mataloni, 2013. The planktonic communities from peat bog pools: structure, temporal variation and environmental factors. Journal Plankton Research 35: 1234–1253.

    Article  Google Scholar 

  • Quiroga, M. V., A. Valverde, G. Mataloni & D. Cowan, 2015. Understanding diversity patterns in bacterioplankton communities from a sub-Antarctic peatland. Environmental Microbiology Reports 7: 547–553.

    Article  Google Scholar 

  • Quiroga, M. V., G. Mataloni, B. M. S. Wanderley, A. M. Amado & F. Unrein, 2017. Bacterioplankton morphotypes structure and cytometric fingerprint rely on environmental conditions in a sub-Antarctic peatland. Hydrobiologia 787: 255–268.

    Article  CAS  Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Roig, C., 2004. Antecedentes sobre turberas en Tierra del Fuego. In Blanco, D. E. & V. M. de la Balze (eds), Los turbales de la Patagonia: bases para su inventario y la conservación de su biodiversidad. Fundación Humedales/Wetlands International, Buenos Aires: 33–44.

    Google Scholar 

  • Roig, C. & F. A. Roig, 2004. Consideraciones generales. In Blanco, D. E. & V. M. de la Balse (eds), Los turbales de la Patagonia, Bases para su inventario y la conservación de su biodiversidad. Fundación Humedales/Wetlands International, Buenos Aires: 5–21.

    Google Scholar 

  • Roulet, N., P. M. Lafleur, P. J. H. Richard, T. R. Moore, E. R. Humphreys & J. Bubier, 2007. Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Global Change Biology 13: 397–411.

    Article  Google Scholar 

  • Rydin, H. & J. K. Jeglum, 2006. The Biology of Peatlands. Oxford University Press, Oxford.

    Book  Google Scholar 

  • Salmaso, N. & J. Padisák, 2007. Morpho-Functional Groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112.

    Article  Google Scholar 

  • Sharp, J. H., E. T. Peltzer, M. J. Alperin, G. Gauwet, J. W. Farrington, B. Fry, D. M. Karl, J. H. Martin, A. Spitzy, S. Tugrul & C. A. Carlson, 1993. DOC procedures sub-group report. Marine Chemistry 41: 37–49.

    Article  CAS  Google Scholar 

  • Stamenković, M. & D. Hanelt, 2016. Geographic distribution and ecophysiological adaptations of desmids (Zygnematophyceae, Streptophyta) in relation to PAR, UV radiation and temperature: a review. Hydrobiologia 787: 1–26.

    Article  Google Scholar 

  • Štastný, J., 2008. Desmids from ephemeral pools and aerophytic habitats from the Czech Republic. Biologia 63: 888–894.

    Article  Google Scholar 

  • Štastný, J., 2009. The desmids of the Swamp Nature Reserve (North Bohemia, Czech Republic) and a small neighbouring bog: species composition and ecological condition of both sites. Fottea 9: 135–148.

    Article  Google Scholar 

  • Štastný, J. & F. A. C. Kouwets, 2012. New and remarkable desmids (Zygnematophyceae, Streptophyta) from Europe: taxonomical notes based on LM and SEM observations. Fottea Olomouc 12: 293–313.

    Article  Google Scholar 

  • Štěpánková, J., J. Vavrušková, P. Hašler, P. Mazalová & A. Poulíčková, 2008. Diversity and ecology of desmids of peat bogs in the Jizerskéhory Mts. Biologia 63: 891–896.

    Article  Google Scholar 

  • Štěpánková, J., P. Hašler, M. Hladká & A. Poulíčková, 2012. Diversity and ecology of desmids of peat bogs in the Jeseníky Mts: spatial distribution, remarkable finds. Fottea 12: 111–126.

    Article  Google Scholar 

  • terBraak, C. J. F. & P. Šmilauer, 1998. CANOCO Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination (vers. 4). Microcomputer Power, Ithaca, NY.

  • Utermöhl, H., 1958. Zurvervollkommung der quatitativen phytoplankton-methodik. Internationale vereiningung für theoretische und Angewandte limnologie 9: 1–38.

    Google Scholar 

  • van Bellen, S., D. Mauquoy, P. D. M. Hughes, T. P. Roland, T. J. Daley, N. J. Loader, F. A. Street-Perrott, E. M. Rice, V. A. Pancotto & R. J. Payne, 2016. Last-Holocene climate dynamics recorded in the peat bogs of Tierra del Fuego, South America. The Holocene 26: 489–501.

    Article  Google Scholar 

  • van Geest, A. & P. F. M. Coesel, 2012. Desmids from Lake Nabugabo (Uganda) and adjacent peat bogs. Fottea 12: 95–110.

    Article  Google Scholar 

  • West, W. & G. S. West, 1904. A monograph of British Desmidiaceae. I. Ray Society, London.

    Book  Google Scholar 

  • West, W. & G. S. West, 1905. A Monograph of British Desmidiaceae II. Ray Society, London.

    Google Scholar 

  • West, W. & G. S. West, 1908. A Monograph of British Desmidiaceae III. Ray Society, London.

    Google Scholar 

  • West, W. & G. S. West, 1912. A Monograph of British Desmidiaceae IV. Ray Society, London.

    Google Scholar 

  • West, W., G. S. West & N. Carter, 1923. A Monograph of British Desmidiaceae V, Vol. Ray. Ray Society, London.

    Google Scholar 

  • Yacubson, S., 1963. Desmidiaceas de Lapataia (Tierra del Fuego). Revista del museo Argentino de Ciencias Naturales Bernadino Rivadavia e Instituto Nacional de Investigación de las Ciencias Naturales. Hidrobiologia 1: 157–178.

    Google Scholar 

  • Zar, J. H., 2010. Biostatistical Analysis. Pearson prentice hall, Upper Saddle River.

    Google Scholar 

Download references

Acknowledgements

This research was supported by Grant PICT 2012- 0529 from ANPCyT and the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Field research and samples extraction permit was granted by the Provincia de Tierra del Fuego through Resolution SDSyS 570/12. The authors thank the Dirección Provincial de Recursos Hídricos de la Provincia de Tierra del Fuego and Centro Austral de Investigaciones Científicas (CADIC- CONICET) by logistical support, and to all members of the research team (V. Casa, S. Camargo, P. Fermani, D. García, R. Lombardo, M. V. Quiroga and B. Van de Vijver), for partaking in the field work; and also to the anonymous reviewers and editors for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela González Garraza.

Additional information

Handling editor: Judit Padisák

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González Garraza, G., Burdman, L. & Mataloni, G. Desmids (Zygnematophyceae, Streptophyta) community drivers and potential as a monitoring tool in South American peat bogs. Hydrobiologia 833, 125–141 (2019). https://doi.org/10.1007/s10750-019-3895-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-3895-x

Keywords

Navigation