Skip to main content
Log in

Viscosity and Surface Tension of Saturated n-Pentane

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Light scattering by thermally excited capillary waves on liquid surfaces or interfaces can be used for the investigation of viscoelastic properties of fluids. In this work, the simultaneous determination of surface tension and liquid kinematic viscosity of n-pentane by surface light scattering (SLS) on a gas–liquid interface was carried out. The experiments are based on a heterodyne detection scheme and signal analysis by photon correlation spectroscopy (PCS). Measurements were performed under saturation conditions over a wide temperature range from about 233 to 363 K. For the whole temperature range the total uncertainty of the liquid kinematic viscosity and surface tension is estimated to be better than 1.0 and 1.2, respectively. The results obtained corroborate the reliability of the SLS technique for the determination of thermophysical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Langevin, Light Scattering by Liquid Surfaces and Complementary Techniques (Marcel Dekker, New York, 1992).

  2. E. H. Lucassen-Reynders and J. Lucassen, Advan.Colloid Interface Sci. 2: 347 (1969).

    Google Scholar 

  3. A. P. Fröba, Simultane Bestimmung von Viskosität und Ober.ächenspannung transparen-ter Fluide mittels Ober.ächenlichtstreuung, Dr.-Ing. thesis (Friedrich-Alexander-Univer-sität Erlangen-Nürnberg, Erlangen 2002).

  4. A. P. Fröba and A. Leipertz, Int.J.Thermophys. 24: 895 (2003).

    Google Scholar 

  5. W. Brouwer and R. K. Pathria, Phys.Rev. 163: 200 (1967).

    Google Scholar 

  6. R. H. Katyl and U. Ingard, Phys.Rev.Lett. 19: 64 (1967).

    Google Scholar 

  7. K. Sakai, P.-K. Choi, H. Tanaka, and K. Takagi, Rev.Sci.Instrum. 62: 1192 (1991).

    Google Scholar 

  8. E. S. Wu and W. W. Webb, Phys.Rev.A 8: 2077 (1973).

    Google Scholar 

  9. P. M. Papoular, J.de Phys.(Paris) 29: 81 (1968).

    Google Scholar 

  10. J. Meunier, J.de Phys.(Paris) 30: 933 (1969).

    Google Scholar 

  11. R. Span and W. Wagner, Int.J.Thermophys. 24: 41 (2003).

    Google Scholar 

  12. K. Lucas, C.I.T. 46: 157 (1974).

    Google Scholar 

  13. R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids (McGraw-Hill, New York, 1977, 1987).

    Google Scholar 

  14. C. Miqueu, D. Broseta, J. Satherley, B. Mendiboure, J. Lachaise, and A. Graciaa, Fluid Phase Equilib. 172: 169 (2000).

    Google Scholar 

  15. I. F. Golubev, Viscosity of Gases and Gas Mixtures (Fizmat Press, Moscow, 1959).

  16. I. F. Golubev and N. A. Agaev, Viscosity of Limiting Hydrocarbons, (Azerbaydzhan State Press, Baku, 1964).

  17. C. M. B. P. Oliveira and W. A. Wakeham, Int.J.Thermophys. 13: 773 (1992).

    Google Scholar 

  18. E. Kiran and Y. L. Sen, Int.J.Thermophys. 13: 411 (1992).

    Google Scholar 

  19. H. H. Reamer, G. Cokelet, and B. H. Sage, Anal.Chem. 31: 1422 (1959).

    Google Scholar 

  20. R. M. Hubbard and G. G. Brown, Ibid 35: 1276 (1943).

    Google Scholar 

  21. B. H. Sage and W. N. Lacey, Trans.Am.Inst.Mining Met.Engrs. 127: 118 (1938).

    Google Scholar 

  22. A. Estrada-Baltazar, G. A. Iglesias-Silva, and M. A. Barrufet, J.Chem.Eng.Data 43: 601 (1998).

    Google Scholar 

  23. M. J. Assael, J. H. Dymond, M. Papadaki, and P. M. Patterson, Int.J.Thermophys. 13: 269 (1992).

    Google Scholar 

  24. Standard Reference Database 14, Version 4, National Institute of Standards Technology NIST, Boulder, Colorado (2000).

  25. A. L. Lee, K. E. Starling, J. P. Dolan, and R. T. Ellington, AIChE J. 10: 694 (1964).

    Google Scholar 

  26. A. L. Lee and R. T. Ellington, J.Chem.Eng.Data 10: 101 (1965).

    Google Scholar 

  27. J. J. Jasper and E. Kring, J.Phys.Chem. 59: 1019 (1955).

    Google Scholar 

  28. B. A. Grigoryev, B. V. Nemzer, D. S. Kurumov, and J. V. Sengers, Int.J.Thermophys. 13: 453 (1992).

    Google Scholar 

  29. G. R. Somayajulu, Int.J.Thermophys. 9: 559 (1988).

    Google Scholar 

  30. A. Romero-Mart ´ýnez and A. Trejo, Int.J.Thermophys. 19: 1605 (1998).

    Google Scholar 

  31. N. B. Vargaftik, Tables on the Thermophysical Properties of Liquids and Gases in Normal and Dissociated States Hemisphere, Washington, D. C., 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fröba, A.P., Pellegrino, L.P. & Leipertz, A. Viscosity and Surface Tension of Saturated n-Pentane. International Journal of Thermophysics 25, 1323–1337 (2004). https://doi.org/10.1007/s10765-004-5741-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-004-5741-1

Navigation