Skip to main content
Log in

The Viscosity of Aqueous Alkali-Chloride Solutions up to 623 K, 1,000 bar, and High Ionic Strength

  • Original Paper
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

An accurate viscosity (dynamic viscosity) model is developed for aqueous alkali-chloride solutions of the binary systems, LiCl–H2O, NaCl–H2O, and KCl–H2O, from 273 K to 623 K, and from 1 bar to 1,000 bar and up to high ionic strength. The valid ionic strengths for the LiCl–H2O, NaCl–H2O, and KCl–H2O systems are 0 to 16.7 mol · kg−1, 0 to 6 mol · kg−1, and 0 to 4.5 mol · kg−1, respectively. Comparison of the model with about 4,150 experimental data points concludes that the average absolute viscosity deviation from experimental data in the above range is within or about 1 % for the LiCl–H2O, NaCl–H2O, and KCl–H2O mixtures, indicating the model is of experimental accuracy. With a simple mixing rule, this model can be extrapolated to predict the viscosity of ternary aqueous alkali-chloride solutions, making it useful in reservoir fluid flow simulation. A computer code is developed for this model and can be obtained from the author: (maoshide@cugb.edu.cn).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

m :

Molality (mol · kg−1) of alkali-chloride in liquid phase

P :

Total pressure in bar

T :

Absolute temperature in kelvin

η r :

Relative viscosity

η sol :

Viscosity of solutions in Pa · s

\({\eta _{{\rm H}_2{\rm O}}}\) :

Viscosity of pure water in Pa · s

η mix :

Viscosity of ternary aqueous alkali-chloride solutions

ρ sol :

Density of aqueous salt-chloride solutions in g · cm−3

\({\rho _{{\rm H}_2{\rm O}}}\) :

Density of pure water in g · cm−3

a i , b i , c i , d i :

Parameters

References

  1. Pruess K., Garcia J.: Environ. Geol. 42, 282 (2002)

    Article  Google Scholar 

  2. Henderson N., Flores E., Sampaio M., Freitas L., Platt G.M.: Chem. Eng. Sci. 60, 1797 (2005)

    Article  Google Scholar 

  3. Magueijo V., Semiao V., de Pinho M.N.: Int. J. Heat Mass Transf. 48, 1716 (2005)

    Article  Google Scholar 

  4. Laliberte M.: J. Chem. Eng. Data 52, 321 (2007)

    Article  Google Scholar 

  5. Kestin J., Khalifa H.E., Correia R.J.: J. Phys. Chem. Ref. Data 10, 57 (1981)

    ADS  Google Scholar 

  6. Kestin J., Khalifa H.E., Correia R.J.: J. Phys. Chem. Ref. Data 10, 71 (1981)

    Article  ADS  Google Scholar 

  7. S.L. Phillips, A. Igbene, J.A. Fair, H. Ozbek, M. Tavana, A Technical Databook for Geothermal Energy Utilization. Lawrence Berkeley Laboratory Report LBL-12810 (1981)

  8. McCain W.D.: SPE Reserv. Eng. 6, 266 (1991)

    Google Scholar 

  9. Batzle M., Wang Z.J.: Geophysics 57, 1396 (1992)

    Article  ADS  Google Scholar 

  10. Palliser C., McKibbin R.: Transp. Porous Med. 33, 155 (1998)

    Article  Google Scholar 

  11. Hefter G., May P.M., Sipos P., Stanley A.: J. Mol. Liq. 103, 261 (2003)

    Article  Google Scholar 

  12. Othmer D.F., Conwell J.W.: Ind. Eng. Chem. 37, 1112 (1945)

    Article  Google Scholar 

  13. Einstein A.: Ann. Phys. Berlin 34, 591 (1911)

    Article  ADS  Google Scholar 

  14. Zhang H.L., Chen G.H., Han S.J.: J. Chem. Eng. Data 42, 526 (1997)

    Article  Google Scholar 

  15. Potter R.W.: Geotherm. Resour. Council Trans. 2, 543 (1978)

    Google Scholar 

  16. H. Alkan, T. Babadagli, A. Satman, in Proceedings of World Geothermal Congress (International Geothermal Association, Florence, 1995), pp. 1659–1665

  17. C. Oldenburg, K. Pruess, M. Lippmann, in Proceedings of World Geothermal Congress (International Geothermal Association, Florence, 1995), pp. 1647–1652

  18. Spivey J.P., Mccain W.D., North R.: J. Can. Petrol. Technol. 43, 52 (2004)

    Google Scholar 

  19. Correia R.J., Kestin J., Khalifa H.E.: Ber. Bunsen-Ges. Phys. Chem. 83, 20 (1979)

    Google Scholar 

  20. Hu Y.F.: Chem. Eng. Sci. 59, 2457 (2004)

    Article  Google Scholar 

  21. Jones G., Christian S.M.: J. Am. Chem. Soc. 59, 484 (1937)

    Article  Google Scholar 

  22. Abdulagatov I.M., Zeinalova A.B., Azizov N.D.: J. Mol. Liq. 126, 75 (2006)

    Article  Google Scholar 

  23. Lencka M.M., Anderko A., Sanders S.J., Young R.D.: Int. J. Thermophys. 19, 367 (1998)

    Article  Google Scholar 

  24. Wang P., Anderko A., Young R.D.: Fluid Phase Equilib. 226, 71 (2004)

    Article  Google Scholar 

  25. Jiang J., Sandler S.I.: Ind. Eng. Chem. Res. 42, 6267 (2003)

    Article  Google Scholar 

  26. Huber M.L., Perkins R.A., Laesecke A., Friend D.G., Sengers J.V., Assael M.J., Metaxa I.N., Vogel E., Mares R., Miyagawa K.: J. Phys. Chem. Ref. Data 38, 101 (2009)

    Article  ADS  Google Scholar 

  27. Wagner W., Cooper J.R., Dittmann A., Kijima J., Kretzschmar H.-J., Kruse A., Mares R., Oguchi K., Sato H., Stocker I., Sifner O., Takaishi Y., Tanishita I., Trubenbach J., Willkommen T.: J. Eng. Gas Turbines Power 122, 150 (2000)

    Article  Google Scholar 

  28. Wakeham W.A., Nagashima A., Sengers J.V.: Experimental Thermodynamics, vol. III. Blackwell Scientific Publications, Oxford (1991)

    Google Scholar 

  29. Akhundov T.S., Guseynov A.G., Ishkhanov Y.B., Akhundov R.T., Iskenderov A.I.: Izv. Vissh. Ucheb. Zaved., ser. Neft’ i Gaz 7, 65 (1990)

    Google Scholar 

  30. Semenyuk E.N., Zarembo V.I., Feodorov M.K.: Zh. Prikl. Khimii. 50, 315 (1977)

    Google Scholar 

  31. Bando S., Takemura F., Nishio M., Hihara E., Akai M.: J. Chem. Eng. Data 49, 1328 (2004)

    Article  Google Scholar 

  32. Nickels L., Allmand A.J.: J. Phys. Chem. 41, 861 (1937)

    Article  Google Scholar 

  33. Green W.H.: J. Chem. Soc. 93, 2023 (1908)

    Google Scholar 

  34. J.N. Sugden, J. Chem. Soc. 174 (1926)

  35. V.D. Laurence, J.H. Wolfenden, J. Chem. Soc. 1144 (1934)

  36. Satoh T., Hayashi K.: Bull. Chem. Soc. Jpn. 34, 1260 (1961)

    Article  Google Scholar 

  37. Carman P.C.: J. Phys. Chem. 73, 1095 (1969)

    Article  Google Scholar 

  38. Ostroff A.G., Snowden B.S., Woessner D.E.: J. Phys. Chem. 73, 2784 (1969)

    Article  Google Scholar 

  39. Desnoyers J.E., Perron G.: J. Sol. Chem. 1, 199 (1972)

    Article  Google Scholar 

  40. Isono T.: Rep. Inst. Phys. Chem. (in Japanese) 56, 103 (1980)

    Google Scholar 

  41. Out D.J.P., Los J.M.: J. Sol. Chem. 9, 19 (1980)

    Article  Google Scholar 

  42. Pepinov R.I., Lobkova N.V., Panakhov I.A.: Teplofiz. Visok. Temp. 27, 1086 (1989)

    Google Scholar 

  43. Wimby J.M., Berntsson T.S.: J. Chem. Eng. Data 39, 68 (1994)

    Article  Google Scholar 

  44. Stokes R.H., Mills R.: Viscosity of Electrolytes and Related Properties, pp. 118. Pergamon Press, Oxford, New York (1965)

    Google Scholar 

  45. Suryanarayana C.V., Venkatesan V.K.: Trans. Faraday Soc. 54, 1709 (1958)

    Article  Google Scholar 

  46. Korosi A., Fabuss B.M.: J. Chem. Eng. Data 13, 548 (1968)

    Article  Google Scholar 

  47. Goncalves F.A., Kestin J.: Ber. Bunser-Ges. Phy. Chem. 81, 1156 (1977)

    Google Scholar 

  48. Kestin J., Khalifa H.E., Ro S.T., Wakeham W.A.: J. Chem. Eng. Data 22, 207 (1977)

    Article  Google Scholar 

  49. Kestin J., Khalifa H.E., Abe Y., Grimes C.E., Sookiazian H., Wakeham W.A.: J. Chem. Eng. Data 23, 328 (1978)

    Article  Google Scholar 

  50. Pepinov R.I., Yusufova V.D., Lobkova N.V., Panakhov I.A.: Teplofiz. Visok. Temp. 16, 960 (1978)

    Google Scholar 

  51. Pepinov R.I., Yusufova V.D., Lobkova N.V.: Zh. Fizich. Khimii 53, 306 (1979)

    Google Scholar 

  52. Kestin J., Shankland I.R.: Int. J. Thermophys. 5, 241 (1984)

    Article  Google Scholar 

  53. Afzal M., Saleem M., Mahmood M.T.: J. Chem. Eng. Data 34, 339 (1989)

    Article  Google Scholar 

  54. Zhang H.L., Han S.J.: J. Chem. Eng. Data 41, 516 (1996)

    Article  Google Scholar 

  55. Kumagai A., Yokoyama C.: J. Chem. Eng. Data 44, 227 (1999)

    Article  Google Scholar 

  56. Motin M.A.: J. Chem. Eng. Data 49, 94 (2004)

    Article  Google Scholar 

  57. Jones G., Talley S.K.: J. Am. Chem. Soc. 55, 624 (1933)

    Article  Google Scholar 

  58. Jones G., Talley S.K.: J. Am. Chem. Soc. 55, 4124 (1933)

    Article  Google Scholar 

  59. Stokes R.H., Mills R.: Viscosity of Electrolytes and Related Properties, pp. 105–106. Pergamon Press, Oxford, New York (1965)

    Google Scholar 

  60. Suryanarayana C.V., Venkatesan V.K.: Bull. Chem. Soc. Jpn 31, 442 (1958)

    Article  Google Scholar 

  61. Grimes C.E., Kestin J., Khalifa H.E.: J. Chem. Eng. Data 24, 121 (1979)

    Article  Google Scholar 

  62. Kestin J., Shankland I.R., Paul R.: Int. J. Thermophys. 2, 301 (1981)

    Article  Google Scholar 

  63. R.I. Pepinov, V.J. Yusufova, N.V. Lobkova, I.A. Panakhov, in Proceedings of 10th International Conference on Properties of Steam, vol. 2 ed. by V.V. Sytchev, A.A. Aleksandrov, (Mir Publications, Moscow, 1984), pp. 196–202.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shide Mao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, S., Duan, Z. The Viscosity of Aqueous Alkali-Chloride Solutions up to 623 K, 1,000 bar, and High Ionic Strength. Int J Thermophys 30, 1510–1523 (2009). https://doi.org/10.1007/s10765-009-0646-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-009-0646-7

Keywords

Navigation