Skip to main content
Log in

Improved QSDC Protocol over a Collective-Dephasing Noise Channel

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Recently, Ge and Liu (Chin. Phys. Lett. 24(10):2727–2729, 2007) proposed a quantum secure direct communication (QSDC) protocol using a decoherence-free subspace (DFS) against collective-dephasing noise. Users of their protocol can directly recover the secret message after quantum transmission without transmission of any additional classical information except for the eavesdropping check. This study points out a pitfall in Ge and Liu’s scheme, in which an eavesdropper can deliberately modify the message without being detected. Furthermore, an enhanced scheme is proposed to avoid the modification attack and to improve the qubit efficiency from 8.3 % to 12.5 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Long, G.-L., Deng, F.-G., Wang, C., Li, X.-H., Wen, K., Wang, W.-Y.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2(3), 251–272 (2007)

    Article  ADS  Google Scholar 

  2. Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state (vol. 253, p. 15, 2005). Opt. Commun. 262(1), 134 (2006)

    Article  ADS  Google Scholar 

  3. Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73(2) (2006)

  4. Deng, F.-G., Long, G., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  5. Wang, C., Deng, F.-G., Li, Y.-S., Liu, X.-S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)

    Article  ADS  Google Scholar 

  6. Yang, Y., Wen, Q.: Threshold quantum secure direct communication without entanglement. Sci. China Ser. G 51(2), 176–183 (2008)

    Article  MATH  Google Scholar 

  7. Deng, F.-G., Long, G.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  8. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(2), 022321 (2008)

    Article  ADS  Google Scholar 

  9. Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79(17), 3306 (1997)

    Article  ADS  Google Scholar 

  10. Knill, E., Laflamme, R., Viola, L.: Theory of quantum error correction for general noise. Phys. Rev. Lett. 84(11), 2525 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Kempe, J., Bacon, D., Lidar, D., Whaley, K.: Theory of decoherence-free fault-tolerant universal quantum computation. Phys. Rev. A 63(4), 042307 (2001)

    Article  ADS  Google Scholar 

  12. Boileau, J.C., Gottesman, D., Laflamme, R., Poulin, D., Spekkens, R.W.: Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. Lett. 92(1), 017901 (2004)

    Article  ADS  Google Scholar 

  13. Zhang, Z.J.: Robust multiparty quantum secret key sharing over two collective-noise channels. Physica A 361(1), 233–238 (2006)

    Article  ADS  Google Scholar 

  14. Yang, C.-W., Tsai, C.-W., Hwang, T.: Thwarting intercept-and-resend attack on Zhang’s quantum secret sharing using collective rotation noises. Quantum Inf. Process. 11(1), 113–122 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Robust quantum secure direct communication over collective rotating channel. Commun. Theor. Phys. 53(4), 645–647 (2010)

    Article  ADS  MATH  Google Scholar 

  16. Yang, C.-W., Tsai, C.-W., Hwang, T.: Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci. China Phys. 54(3), 496–501 (2011)

    Google Scholar 

  17. Ge, H., Liu, W.Y.: A new quantum secure direct communication protocol using decoherence-free subspace. Chin. Phys. Lett. 24(10), 2727–2729 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  18. Hwang, T., Lee, K.C.: EPR quantum key distribution protocols with potential 100 % qubit efficiency. IET Inf. Secur. 1(1), 43–45 (2007)

    Article  Google Scholar 

  19. Hwang, T., Lee, K.C., Li, C.M.: Provably secure three-party authenticated quantum key distribution protocols. IEEE Trans. Dependable Secure Comput. 4(1), 71–80 (2007)

    Article  MathSciNet  Google Scholar 

  20. Cai, Q.-Y.: The “Ping-Pong” protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91(10), 109801 (2003)

    Article  ADS  Google Scholar 

  21. Stallings, W.: Cryptography and Network Security: Principles and Practice, 3rd edn. Prentice Hall International, Englewood Cliffs (2003)

    Google Scholar 

  22. Lin, J., Hwang, T.: An enhancement on Shi et al.’s multiparty quantum secret sharing protocol. Opt. Commun. 284(5), 1468–1471 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  23. Lin, J., Tseng, H.-Y., Hwang, T.: Intercept–resend attacks on Chen et al.’s quantum private comparison protocol and the improvements. Opt. Commun. 284(9), 2412–2414 (2011)

    Article  ADS  Google Scholar 

  24. Chong, S.-K., Tsai, C.-W., Hwang, T.: Improvement on “Quantum key agreement protocol with maximally entangled states”. Int. J. Theor. Phys. 50(6), 1793–1802 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Presented at the Proceedings of IEEE International Conference on Computers Systems and Signal Processing, Bangalore, India (1984)

  26. Hwang, T., Hwang, C.C., Tsai, C.W.: Quantum key distribution protocol using dense coding of three-qubit W state. Eur. Phys. J. D, Atom. Mol. Opt. Plasma Phys. 61(3), 785–790 (2011)

    Google Scholar 

  27. Deng, F.G., Zhou, P., Li, X.H., Li, C.Y., Zhou, H.Y.: Robustness of two-way quantum communication protocols against Trojan horse attack. Quantum Phys. (2005). arXiv:quant-ph/0508168v1

  28. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)

    Article  ADS  Google Scholar 

  29. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack (vol. 72, art no 044302, 2005). Phys. Rev. A 73(4), 049901 (2006)

    Article  ADS  Google Scholar 

  30. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)

    Article  ADS  Google Scholar 

  31. Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84(20), 4729–4732 (2000)

    Article  ADS  Google Scholar 

  32. Beveratos, A., Brouri, R., Gacoin, T., Villing, A., Poizat, J.P., Grangier, P.: Single photon quantum cryptography. Phys. Rev. Lett. 89(18), 187901 (2002)

    Article  ADS  Google Scholar 

  33. Hughes, R.J., Nordholt, J.E., Derkacs, D., Peterson, C.G.: Practical free-space quantum key distribution over 10 km in daylight and at night. New J. Phys. 4, 43 (2002)

    Article  ADS  Google Scholar 

  34. Stucki, D., Gisin, N., Guinnard, O., Ribordy, G., Zbinden, H.: Quantum key distribution over 67 km with a plug&play system. New J. Phys. 4, 41 (2002)

    Article  ADS  Google Scholar 

  35. Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84(19), 3762–3764 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their very valuable comments, which greatly enhanced the clarity of this paper. We would also like to thank the National Science Council of Republic of China and the Research Center for Quantum Communication and Security, National Cheng Kung University, Taiwan, Republic of China, for the financial support of this research under Contract No. NSC 100-2221-E-006-152-MY3 and D100-36002, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzonelih Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, CW., Hwang, T. Improved QSDC Protocol over a Collective-Dephasing Noise Channel. Int J Theor Phys 51, 3941–3950 (2012). https://doi.org/10.1007/s10773-012-1286-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-012-1286-4

Keywords

Navigation