Skip to main content
Log in

Improved Protocols of Secure Quantum Communication Using W States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Recently, Hwang et al. (Eur. Phys. J. D 61:785, 2011) and Yuan et al. (Int. J. Theor. Phys. 50:2403, 2011) have proposed two efficient protocols of secure quantum communication using 3-qubit and 4-qubit symmetric W state respectively. These two dense coding based protocols are generalized and their efficiencies are considerably improved. Simple bounds on the qubit efficiency of deterministic secure quantum communication (DSQC) and quantum secure direct communication (QSDC) protocols are obtained and it is shown that dense coding is not essential for designing of maximally efficient DSQC and QSDC protocols. This fact is used to design maximally efficient protocols of DSQC and QSDC using 3-qubit and 4-qubit W states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Since in this type of protocols Alice needs to announce exact sequence (classical information) so these are examples of DSQC.

  2. The authors had claimed it as a QSDC protocol but it is actually a DSQC protocol since Bob needs the measurement outcomes of Alice’s measurement to decode the classical information encoded by Alice.

  3. When 2x qubits (a random mix of message qubits and decoy qubits) travel through a channel accessible to Eve and x of them are test for eavesdropping then for any δ>0, the probability of obtaining less than δn errors on the check qubits (decoy qubits), and more than (δ+ϵ)n errors on the remaining x qubits is asymptotically less than exp[−O(ϵ 2 x)] for large x [28]. As the unconditional security obtained in quantum cryptographic protocol relies on the fact that any attempt of Eavesdropping can be identified. Thus to obtain an unconditional security we always need to check half of travel qubits for eavesdropping. Thus we have to randomly add decoy qubits whose number would be equal to the total number of travel qubits.

  4. The original protocol is insecure as Eve can obtain substantial amount of information before being detected. Inclusion of rearrangement of particle ordering can make the protocol secure. But that would increase the amount of classical communication and consequently decrease the efficiency.

References

  1. Bennett, C.H., Brassard, G.: In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, p. 175 (1984)

    Google Scholar 

  2. Ekert, A.K.: Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bennett, C.H.: Phys. Rev. Lett. 68, 3121 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Long, G., et al.: Front. Phys. China 2, 251 (2007)

    Article  ADS  Google Scholar 

  5. Shimizu, K., Imoto, N.: Phys. Rev. A 60, 157 (1999)

    Article  ADS  Google Scholar 

  6. Hillery, M., Buzek, V., Bertaiume, A.: Phys. Rev. A 59, 1829 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  7. Bostrom, K., Felbinger, T.: Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  8. Goldenberg, L., Vaidman, L.: Phys. Rev. Lett. 75, 1239 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Lucamarini, M., Mancini, S.: Phys. Rev. Lett. 94, 140501 (2005)

    Article  ADS  Google Scholar 

  10. Cai, Q.Y., Li, B.W.: Phys. Rev. A 69, 054301 (2004)

    Article  ADS  Google Scholar 

  11. Deng, F.G., Long, G.L., Liu, X.S.: Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  12. Deng, F.G., Long, G.L.: Phys. Rev. A 68, 042315 (2003)

    Article  ADS  Google Scholar 

  13. Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Phys. Rev. A 73, 022338 (2006)

    Article  ADS  Google Scholar 

  14. Yuan, H., et al.: Int. J. Theor. Phys. 50, 2403 (2011)

    Article  MATH  Google Scholar 

  15. Tsai, C.W., Hsieh, C.R., Hwang, T.: Eur. Phys. J. D 61, 779 (2011)

    Article  ADS  Google Scholar 

  16. Zhao, G., et al.: Procedia Eng. 29, 568 (2012)

    Article  Google Scholar 

  17. Hwang, T., Hwang, C.C., Tsai, C.W.: Eur. Phys. J. D 61, 785 (2011)

    Article  ADS  Google Scholar 

  18. Wang, M.Y., Yan, F.L.: Chin. Phys. B 20, 120309 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  19. Pradhan, B., Agrawal, P., Pati, A.K.: (2007). arXiv:0705.1917v1 [quant-ph]

  20. Cabello, A.: Phys. Rev. Lett. 85, 5635 (2000)

    Article  ADS  Google Scholar 

  21. Tsai, C.W., Hwang, T.: Opt. Commun. 283, 4397 (2010)

    Article  ADS  Google Scholar 

  22. Wang, X.W.: Quantum Inf. Process. 8, 431 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cao, H.J., Song, H.S.: Chin. Phys. Lett. 23, 290 (2006)

    Article  ADS  Google Scholar 

  24. Wang, J., Zhang, Q., Tang, C.J.: Commun. Theor. Phys. (Beijing, China) 48, 637 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  25. Dong, L., et al.: Commun. Theor. Phys. 50, 359 (2008)

    Article  ADS  Google Scholar 

  26. Yaun, H., et al.: Commun. Theor. Phys. 55, 984 (2011)

    Article  ADS  Google Scholar 

  27. Banerjee, A., Pathak, A.: Phys. Lett. A (2012). doi:10.1016/j.physleta.2012.08.032

    Google Scholar 

  28. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, p. 589. Cambridge University Press, New Delhi (2008)

    Google Scholar 

  29. Eible, M., et al.: Phys. Rev. Lett. 92, 077901 (2004)

    Article  ADS  Google Scholar 

  30. Yao, X.-C., et al.: Phys. Rev. Lett. 105, 120402 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

AP thanks Department of Science and Technology (DST), India for support provided through the DST project No. SR/S2/LOP-0012/2010 and the Ministry of Education of the Czech Republic for support provided through the project CZ.1.05/2.1.00/03.0058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anindita Banerjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukla, C., Banerjee, A. & Pathak, A. Improved Protocols of Secure Quantum Communication Using W States. Int J Theor Phys 52, 1914–1924 (2013). https://doi.org/10.1007/s10773-012-1311-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-012-1311-7

Keywords

Navigation