Skip to main content
Log in

Improved Secure Multiparty Computation with a Dishonest Majority via Quantum Means

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we propose an improved version of K. Loukopoulos and D.E. Browne’s quantum multiparty computation protocol (Phys. Rev. A 81:062336, 2010). Compared to the previously protocol, the improved protocol can avoid a security flaw and has higher efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing, Bangalore, India, p. 175. IEEE, New York (1984)

    Google Scholar 

  2. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Wang, X.B.: Quantum key distribution with two-qubit quantum codes. Phys. Rev. Lett. 92, 077902 (2004)

    Article  ADS  Google Scholar 

  4. Zhang, Q., Yin, J., Chen, T.Y., Lu, S., Zhang, J., Li, X.Q., Yang, T., Wang, X.B., Pan, J.W.: Experimental fault-tolerant quantum cryptography in a decoherence-free subspace. Phys. Rev. A 73, 020301 (2006)

    Article  ADS  Google Scholar 

  5. Sun, Y., Wen, Q.Y., Gao, F., Zhu, F.C.: Robust variations of the Bennett-Brassard 1984 protocol against collective noise. Phys. Rev. A 80, 032321 (2009)

    Article  ADS  Google Scholar 

  6. Tan, Y.G., Cai, Q.Y.: Practical decoy state quantum key distribution with finite resource. Eur. Phys. J. D 56, 449–455 (2010)

    Article  ADS  Google Scholar 

  7. Wei, T., Tsai, C.W., Hwang, T.: Comment on “Quantum key distribution and quantum authentication based on entangled state”. Int. J. Theor. Phys. 50, 2703–2707 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)

    Article  ADS  Google Scholar 

  9. Hillery, M., Buzĕk, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  10. Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310, 247 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of the Hillery-Buek-Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76, 062324 (2007)

    Article  ADS  Google Scholar 

  12. Han, L.F., Liu, Y.M., Yuan, H., Zhang, Z.J.: Efficient multiparty-to-multiparty quantum secret sharing via continuous variable operations. Chin. Phys. Lett. 24, 3312 (2007)

    Article  ADS  Google Scholar 

  13. Wang, T.Y., Wen, Q.Y., Gao, F., Lin, S., Zhu, F.C.: Cryptanalysis and improvement of multiparty quantum secret sharing schemes. Phys. Lett. A 65, 373 (2008)

    Google Scholar 

  14. Guo, F.Z., Qin, S.J., Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: Participant attack on a kind of MQSS schemes based on entanglement swapping. Eur. Phys. J. D 56, 445–448 (2010)

    Article  ADS  Google Scholar 

  15. Liu, B., Gao, F., Wen, Q.Y.: Eavesdropping and improvement to multiparty quantum secret sharing with collective Eavesdropping-Check. Int. J. Theor. Phys. 51, 1211–C1223 (2012)

    Article  MATH  Google Scholar 

  16. Hwang, T., Hwang, C.C., Yang, C.W., Li, C.M.: Revisiting Deng et al. multiparty quantum secret sharing protocol. Int. J. Theor. Phys. 50, 2790–C2798 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shi, R., Huang, L.S., Yang, W., Zhong, H.: Efficient symmetric five-party quantum state sharing of an arbitrary m-Qubit state. Int. J. Theor. Phys. 50, 3329–3336 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bostroem, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  19. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  20. Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with type entangled states. Phys. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  21. Zhang, L.L., Zhan, Y.B., Zhang, Q.Y.: Controlled quantum secure direct communication by using four particle cluster states. Int. J. Theor. Phys. 48, 971–2976 (2009)

    Google Scholar 

  22. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283, 192 (2010)

    Article  ADS  Google Scholar 

  23. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature (London) 390, 575 (1997)

    Article  ADS  Google Scholar 

  25. Zhang, Z.J., Liu, Y.M., Man, Z.X.: Many-agent controlled teleportation of multi-qubit quantum information via quantum entanglement swapping. Commun. Theor. Phys. 44, 847 (2005)

    Article  ADS  Google Scholar 

  26. Chen, X.B., Wen, Q.Y., Zhu, F.C.: Quantum circuits for probabilistic entanglement teleportation via a partially entangled pair. Int. J. Quantum Inf. 5, 717 (2007)

    Article  MATH  Google Scholar 

  27. Chakrabarty, I.: Teleportation via a mixture of a two qubit subsystem of a N-qubit W and GHZ state. Eur. Phys. J. D 57, 265–269 (2010)

    Article  ADS  Google Scholar 

  28. Cao, H.J., Wang, H.S., Li, P.F., Song, H.S.: Teleportation of a 3-dimensional GHZ state. Int. J. Theor. Phys. 51, 1448–1452 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yao, A.C.: In: Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science, p. 160. IEEE Computer Society, Washington (1982)

    Google Scholar 

  30. Goldreich, O., Micali, S., Wigderson, A.: In: Annual ACM Symposium on Theory of Computing, p. 218. ACM, New York (1987)

    Google Scholar 

  31. Chaum, D., Damgård, I., van de Graaf, J.: In: Lecture Notes in Computer Science, vol. 293, p. 87. Springer, London (1987)

    Google Scholar 

  32. Ben-Or, M., Goldwasser, S., Wigderson, A.: In: Annual ACM Symposium on Theory of Computing, p. 1. ACM, New York (1988)

    Google Scholar 

  33. Chaum, D., Crépeau, C., Damgård, I.: In: Annual ACM Symposium on Theory of Computing, p. 11. ACM, New York (1988)

    Google Scholar 

  34. Rabin, T., Ben-Or, M.: In: Annual ACM Symposium on Theory of Computing, p. 73. ACM, New York (1989)

    Google Scholar 

  35. Beaver, D.: In: Lecture Notes in Computer Science, vol. 435, p. 560. Springer, London (1989)

    Google Scholar 

  36. Damgard, I., Nielsen, J.B.: In: Lecture Notes in Computer Science, vol. 4622, p. 572. Springer, Berlin (2007)

    Google Scholar 

  37. Bennett, C.H., Brassard, G.: In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, p. 175. IEEE, New York (1984)

    Google Scholar 

  38. Wiesner, S.: SIGACT News 15, 78 (1983)

    Article  Google Scholar 

  39. Ekert, A.K.: Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Lo, H.-K.: Phys. Rev. A 56(2), 1154 (1997)

    Article  ADS  Google Scholar 

  41. Loukopoulos, K., Browne, D.E.: Phys. Rev. A 81, 062336 (2010)

    Article  ADS  Google Scholar 

  42. Li, Y.B., Wen, Q., Qin, S.J.: Phys. Rev. A 84, 016301 (2011)

    Article  ADS  Google Scholar 

  43. Anders, J., Browne, D.E.: Phys. Rev. Lett. 102, 050502 (2009)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by NSFC (Grant Nos. 61170270, 61100203, 60903152, 61003286, 61121061, 61103210, and 10961013), NCET (Grant No. NCET-10-0260), SRFDP (Grant No. 20090005110010), Beijing Natural Science Foundation (Grant Nos. 4112040, 4122054, and 4102255), the Fundamental Research Funds for the Central Universities (Grant Nos. BUPT2011YB01, BUPT2011RC0505, 2011PTB-00-29, 2011RCZJ15, 2012RC0612), and Key Laboratory Funds of BESTI (Grant No.YQNJ0903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Bing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YB., Wen, QY. & Qin, SJ. Improved Secure Multiparty Computation with a Dishonest Majority via Quantum Means. Int J Theor Phys 52, 199–205 (2013). https://doi.org/10.1007/s10773-012-1319-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-012-1319-z

Keywords

Navigation