Skip to main content
Log in

Efficient Entanglement Concentration Schemes for Separated Nitrogen-Vacancy Centers Coupled to Low-Q Microresonators

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We present several efficient entanglement concentration protocols (ECPs) with the nitrogen-vacancy (N-V) centers coupled to low-Q microresonators. Based on the input-output process of ancillary coherent light pulse in low-Q microresonators, we can obtain the maximally entangled states among remote participants via local operations and classical communication. Our protocols use a conventional photon detector to discriminate the two coherent states |α〉 and |−α〉, which is more convenient than homodyne measurement. We discuss the feasibility of our protocols, and they may be beneficial for quantum repeaters and quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Bennett, C.H., Wiesner, S.J.: Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Grover, L.K.: Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  4. Ekert, A.K.: Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  6. Bose, S., Vedral, V., Knight, P.L.: Phys. Rev. A 60, 194 (1999)

    Article  ADS  Google Scholar 

  7. Yamamoto, T., Koashi, M., Imoto, N.: Phys. Rev. A 64, 012304 (2001)

    Article  ADS  Google Scholar 

  8. Zhao, Z., Pan, J.W., Zhan, M.S.: Phys. Rev. A 64, 014301 (2001)

    Article  ADS  Google Scholar 

  9. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Phys. Rev. A 77, 062325 (2008)

    Article  ADS  Google Scholar 

  10. Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Phys. Rev. A 85, 012307 (2012)

    Article  ADS  Google Scholar 

  11. Zhang, L.H., Yang, M., Cao, Z.L.: Physica A 374, 611 (2007)

    Article  ADS  Google Scholar 

  12. Wang, H.F., Zhang, S., Yeon, K.H.: Eur. Phys. J. D 56, 271 (2010)

    Article  ADS  Google Scholar 

  13. Xiong, W., Ye, L.: J. Opt. Soc. Am. B 28, 2030 (2011)

    Article  ADS  Google Scholar 

  14. Sun, L.L., Wang, H.F., Zhang, S., Yeon, K.H.: J. Opt. Soc. Am. B 29, 630 (2012)

    Article  ADS  Google Scholar 

  15. Sheng, Y.B., Zhou, L., Zhao, S.M.: Phys. Rev. A 85, 042302 (2012)

    Article  ADS  Google Scholar 

  16. Du, F.F., Li, T., Ren, B.C., Wei, H.R., Deng, F.G.: J. Opt. Soc. Am. B 29, 1399 (2012)

    Article  ADS  Google Scholar 

  17. Gu, B.: J. Opt. Soc. Am. B 29, 1685 (2012)

    Article  ADS  Google Scholar 

  18. Zhou, L., Sheng, Y.B., Cheng, W.W., Gong, L.Y., Zhao, S.M.: J. Opt. Soc. Am. B 30, 71 (2013)

    Article  ADS  Google Scholar 

  19. An, J.H., Feng, M., Oh, C.H.: Phys. Rev. A 79, 032303 (2009)

    Article  ADS  Google Scholar 

  20. Peng, Z.H., Zou, J., Liu, X.J., Xiao, Y.J., Kuang, L.M.: Phys. Rev. A 86, 034305 (2012)

    Article  ADS  Google Scholar 

  21. Peng, Z.H., Zou, J., Liu, X.J., Kuang, L.M.: Opt. Commun. 285, 5558 (2012)

    Article  ADS  Google Scholar 

  22. Cao, C., Wang, C., He, L.Y., Zhang, R.: Opt. Express 21, 4093 (2013)

    Article  ADS  Google Scholar 

  23. Wang, C., Zhang, Y., Jin, G.S.: Phys. Rev. A 84, 032307 (2011)

    Article  ADS  Google Scholar 

  24. Jelezko, F., Gaebel, T., Popa, I., Gruber, A., Wrachtrup, J.: Phys. Rev. Lett. 92, 076401 (2004)

    Article  ADS  Google Scholar 

  25. Yang, W.L., Xu, Z.Y., Feng, M., Du, J.F.: New J. Phys. 12, 113039 (2010)

    Article  ADS  Google Scholar 

  26. Togan, E., Chu, Y., Trifonov, A.S., Jiang, L., Maze, J., Childress, L., Dutt, M.V.G., Sørensen, A.S., Hemmer, P.R., Zibrov, A.S., Lukin, M.D.: Nature (London) 466, 730 (2010)

    Article  ADS  Google Scholar 

  27. Chen, Q., Yang, W.L., Fang, M., Du, J.F.: Phys. Rev. A 83, 054305 (2011)

    Article  ADS  Google Scholar 

  28. Li, P.B., Gao, S.Y., Li, F.L.: Phys. Rev. A 83, 054306 (2011)

    Article  ADS  Google Scholar 

  29. Wang, C., Zhang, Y., Jin, G.S., Zhang, R.: J. Opt. Soc. Am. B 29, 3349 (2012)

    Article  ADS  Google Scholar 

  30. He, L.Y., Cao, C., Wang, C.: Opt. Commun. 298–299, 260 (2013)

    Article  Google Scholar 

  31. Manson, N.B., Harrison, J.P., Sellars, M.J.: Phys. Rev. B 74, 104303 (2006)

    Article  ADS  Google Scholar 

  32. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  33. Hu, C.Y., Young, A., OBrien, J.L., Munro, W.J., Rarity, J.G.: Phys. Rev. B 78, 085307 (2008)

    Article  ADS  Google Scholar 

  34. Wang, X.W., Zhang, D.Y., Tang, S.Q., Xie, L.J., Wang, Z.Y., Kuang, L.M.: Phys. Rev. A 85, 052326 (2012)

    Article  ADS  Google Scholar 

  35. Mei, F., Yu, Y.F., Feng, X.L., Zhang, Z.M., Oh, C.H.: Phys. Rev. A 82, 052315 (2010)

    Article  ADS  Google Scholar 

  36. Balasubramanian, G., Neumann, P., Twitchen, D., Markham, M., Kolesov, R., Mizuochi, N., Isoya, J., Achard, J., Beck, J., Tissler, J., Jacques, V., Hemmer, P.R., Jelezko, F., Wrachtrup, J.: Nat. Mater. 8, 383 (2009)

    Article  ADS  Google Scholar 

  37. Fuchs, G.D., Dobrovitski, V.V., Toyli, D.M., Heremans, F.J., Awschalom, D.D.: Science 326, 1520 (2009)

    Article  ADS  Google Scholar 

  38. Larsson, M., Dinyari, K.N., Wang, H.L.: Nano Lett. 9, 1447 (2009)

    Article  ADS  Google Scholar 

  39. Barbour, R.J., Dinyari, K.N., Wang, H.L.: Opt. Express 18, 18968 (2010)

    Article  Google Scholar 

  40. Barclay, P.E., Fu, K.M.C., Santori, C., Beausoleil, R.G.: Appl. Phys. Lett. 95, 191115 (2009)

    Article  ADS  Google Scholar 

  41. McCutcheon, M.W., Loncar, M.: Opt. Express 16, 19136 (2008)

    Article  ADS  Google Scholar 

  42. Englund, D., Shields, B., Rivoire, K., Hatami, F., Vuckovic, J., Park, H., Lukin, M.D.: Nano Lett. 10, 3922 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant Nos. 61068001 and 11264042; China Postdoctoral Science Foundation under Grant No. 2012M520612; the Program for Chun Miao Excellent Talents of Jilin Provincial Department of Education under Grant No. 201316; and the Talent Program of Yanbian University of China under Grant No. 950010001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Si, B., Wen, JJ., Cheng, LY. et al. Efficient Entanglement Concentration Schemes for Separated Nitrogen-Vacancy Centers Coupled to Low-Q Microresonators. Int J Theor Phys 53, 80–90 (2014). https://doi.org/10.1007/s10773-013-1785-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1785-y

Keywords

Navigation