Skip to main content
Log in

Three-party Quantum Secure Direct Communication with Single Photons in both Polarization and Spatial-mode Degrees of Freedom

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We present an efficient three-party quantum secure direct communication (QSDC) protocol with single photos in both polarization and spatial-mode degrees of freedom. The three legal parties’ messages can be encoded on the polarization and the spatial-mode states of single photons independently with desired unitary operations. A party can obtain the other two parties’ messages simultaneously through a quantum channel. Because no extra public information is transmitted in the classical channels, the drawback of information leakage or classical correlation does not exist in the proposed scheme. Moreover, the comprehensive security analysis shows that the presented QSDC network protocol can defend the outsider eavesdropper’s several sorts of attacks. Compared with the single photons with only one degree of freedom, our protocol based on the single photons in two degrees of freedom has higher capacity. Since the preparation and the measurement of single photon quantum states in both the polarization and the spatial-mode degrees of freedom are available with current quantum techniques, the proposed protocol is practical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dusek, M., Lutkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys 81(3), 1301–1350 (2009)

    Article  ADS  Google Scholar 

  2. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceeding of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp 175–179. IEEE Press, New York (1984)

    Google Scholar 

  3. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett 67(6), 661–663 (1991). doi:10.1103/PhysRevLett.67.661

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bells theorem. Phys. Rev. Lett 68(5), 557–559 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bennett, C.H.: Quantum cryptography using any two nonorthogal states. Phys. Rev. Lett 68(21), 3121–3124 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Cabello, A.: Qutntum key distribution in the Holevo limit. Phys. Rev. Lett 85 (26), 5635–5638 (2000)

    Article  ADS  Google Scholar 

  7. Kulik, S.P., Molotkov, S.N., Radchenko, I.V.: Quantum key distribution on composite photons, polarization qutrits. JETP lett 96(5), 336–341 (2012)

    Article  ADS  Google Scholar 

  8. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  9. Beige, A., Englert, B.G., Kurtsiefer, Ch., Weinfurter, H.: Secure communication with a publicly known key. Acta. Phys. Pol 101(3), 357–368 (2002)

    Article  ADS  MATH  Google Scholar 

  10. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett 89(18), 187–902 (2002). doi:10.1103/PhysRevLett.89.187902

    Article  Google Scholar 

  11. Deng, F.G., Long, G.L., Liu, X.S.: A Two-step quantum direct communication protocol using the Einstein-Pololsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  12. Gu, B., Huang, Y.G., Xia, F., Zhang, Ch.Y.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20(10), 100309 (2011)

    Article  ADS  Google Scholar 

  13. Chang, W.L., Lin, F.J., Zeng, G.J., Chou, Y.H.: Controlled quantum secure direct communication based on single photons. In: Advances in intelligent systems and applications, vol. 2, pp 195–204. Springer, Berlin (2013)

    Chapter  Google Scholar 

  14. Liu, D., Chen, J.L., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys 51(9), 2923–2929 (2012)

    Article  MATH  Google Scholar 

  15. Gu, B., Huang. Y.G., Xia, F., et al.: Bidirectional quantum secure direct communication network protocol with hyperentanglement. Commun. Theor. Phys 56 (4), 659 (2011)

    Article  ADS  MATH  Google Scholar 

  16. Jin, X.R., Ji, X., Zhang, Y.Q., et al.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354(1), 67–70 (2006)

    Article  ADS  Google Scholar 

  17. Man, Zh.X., Xia, Y.J.: Improvement of security of three-party quantum secure direct communication based on GHZ states. Chin. Phys. Lett 24(1), 15 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  18. Gao, F., Qin, S.J., Wen, Q.Y., et al.: Comment on: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354, 67 (2006). Phys. Lett. A, 372(18), 3333-3336(2008)

    Article  ADS  Google Scholar 

  19. Wang, M.Y., Yan, F.l.: Three-party simultaneous quantum secure direct communication scheme with EPR pairs. Chin. Phys. Lett 24(9), 2486 (2007)

    Article  ADS  Google Scholar 

  20. Chong, S.K., Hwang, T.: The enhancement of three-party simultaneous quantum secure direct communication scheme with EPR pairs. Opt. Commun 284(1), 515–518 (2011)

    Article  ADS  Google Scholar 

  21. Wang, L.Y., Chen, X.B., Xu, G., et al.: Information leakage in three-party simultaneous quantum secure direct communication with EPR pairs. Opt. Commun 284(7), 1719–1720 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  22. Yin, X.R., Ma, W.P., Shen, D.S., et al.: Efficient Three-Party Quantum Secure Direct Communication with EPR Pairs. Journal of Quantum Information Science 1, 3 (2013)

    Google Scholar 

  23. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

  24. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Zh.J.: Erratum: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005). Phys. Rev. A 73(4), 049901 (2006)

    Article  ADS  Google Scholar 

  25. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1-2), 23–25 (2006)

    Article  ADS  MATH  Google Scholar 

  26. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)

    Article  ADS  Google Scholar 

  27. Deng, F.G., Zhou, P., et al.: Robustness of two-way quantum communication protocols against Trojan horse attack. arXiv:e-printquant-ph/0508168

Download references

Acknowledgments

This work was supported by the National Science Foundation of China under grant No.61072140, 61373171; the 111 Project No.B08038; the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20100203110003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiLi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Ma, W., Wang, M. et al. Three-party Quantum Secure Direct Communication with Single Photons in both Polarization and Spatial-mode Degrees of Freedom. Int J Theor Phys 55, 2490–2499 (2016). https://doi.org/10.1007/s10773-015-2886-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2886-6

Keywords

Navigation