Skip to main content
Log in

Generalized EMV-Effect Algebras

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Recently in Dvurečenskij and Zahiri (2017), new algebraic structures, called EMV-algebras which generalize both MV-algebras and generalized Boolean algebras, were introduced. We present equivalent conditions for EMV-algebras. In addition, we define a partial algebraic structure, called a generalized EMV-effect algebra, which is close to generalized MV-effect algebras. Finally, we show that every generalized EMV-effect algebra is either an MV-effect algebra or can be embedded into an MV-effect algebra as a maximal ideal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Springer Science and Business Media, Dordrecht (2000)

    Book  MATH  Google Scholar 

  2. Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Springer, Netherlands (2000)

    Book  MATH  Google Scholar 

  3. Dvurečenskij, A., Zahiri, O: On EMV-algebras. arXiv:1706.00571 (2017)

  4. Foulis, D.J.: MV and Heyting effect algebras. Found. Phys. 30(10), 1687–1706 (2000)

    Article  MathSciNet  Google Scholar 

  5. Foulis, D.J., Bennett, M.K.: Effect algebras and unsharp quantum logics. Found. Phys. 24(10), 1331–1352 (1994)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Mundici, D.: Interpretation of AF C -algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65, 15–63 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Pulmannová, S.: Compatibility and decomposition of effects. J. Math. Phys. 43, 2817–2830 (2002)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Riečanová, Z.: Generalization of blocks for D-lattices and lattice-ordered effect algebras. Int. J. Theor. Phys. 39(2), 231–237 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton Univ. Press (1955)

  10. Varadarajan, V.S.: Geometry of Quantum Theory, vol. 1. van Nostrand, Princeton (1968)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

AD is thankful for the support by the grant of the Slovak Research and Development Agency under contract APVV-16-0073 by the grants VEGA No. 2/0069/16 SAV, and GAČR 15-15286S

The authors are very indebted to the anonymous referee for his/her careful reading and suggestions which helped us to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Borzooei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borzooei, R.A., Dvurečenskij, A. & Sharafi, A.H. Generalized EMV-Effect Algebras. Int J Theor Phys 57, 2267–2279 (2018). https://doi.org/10.1007/s10773-018-3750-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3750-2

Keywords

Navigation