Skip to main content
Log in

Quantum Gate-Based Quantum Private Comparison

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Many existing protocols of quantum private comparison (QPC) are often made up of quantum part and classical part, because they employ quantum technology to provide security and use classical computation to perform the comparison. This could result in some lurking unfavourable effects such as insufficient security. To improve the QPC security, the paper presents a QPC protocol without the classical part, which uses Bell states as the quantum resource and substitutes the action of quantum gate for the classical computation. It needs no other complex quantum operations including quantum entanglement swapping technology. Except the phase of the eavesdropping check, quantum measurement isn’t required at one party either. The presented protocol is not only simple and efficient but also of better security. The analyses indicate its correctness so it could serve as an alternative way to implement QPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yang, Y.G., Gao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009)

    Article  ADS  MATH  Google Scholar 

  2. Liu, B., Gao, F., Jia, H.Y., Huang, W., Zhang, W.W., Wen, Q.Y.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 12(2), 887–897 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Chen, X.B., Su, Y., Niu, X.X., Yang, Y.X.: Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise. Quantum Inf. Process. 13(1), 101–112 (2014)

    Article  ADS  MATH  Google Scholar 

  4. Sun, Z.W., Yu, J.P., Wang, P., Xu, L.L., Wu, C.H.: Quantum private comparison with a malicious third party. Quantum Inf. Process. 14(6), 2125–2133 (2015)

    Article  ADS  MATH  Google Scholar 

  5. Lang, Y.-F.: Semi-quantum private comparison using single photons. Int. J. Theor. Phys. 57(10), 3048–3055 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ye, T.-Y., Ye, C.-Q.: Measure-resend semi-quantum private comparison without entanglement. Int. J. Theor. Phys. 57(12), 3819–3834 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yang, Y.G., Xia, J., Jia, X., Shi, L., Zhang, H.: New quantum private comparison protocol without entanglement. Int. J. Quant. Inform. 10(6), 1250065 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ye, T.Y.: Quantum private comparison via cavity QED. Commun. Theor. Phys. 67(2), 147–156 (2017)

    Article  ADS  Google Scholar 

  9. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42(5), 055305 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Liu, W., Wang, Y.B., Cui, W.: Quantum private comparison protocol based on bell entangled states. Commun. Theor. Phys. 57(4), 583–588 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Zi, W., Guo, F.Z., Luo, Y., Cao, S.H., Wen, Q.Y.: Quantum private comparison protocol with the random rotation. Int. J. Theor. Phys. 52(9), 3212–3219 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11(2), 373–384 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, C., Xu, G., Yang, Y.X.: Cryptanalysis and improvements for the quantum private comparison protocol using EPR pairs. Int. J. Quant. Inform. 11(4), 1350039 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Comment on quantum private comparison protocols with a semihonest third party. Quantum Inf. Process. 12(2), 877–885 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Zhang, W.W., Zhang, K.J.: Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inf. Process. 12(5), 1981–1990 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Lin, J., Yang, C.W., Hwang, T.: Quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 13(2), 239–247 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Zhang, B., Liu, X.T., Wang, J., Tang, C.J.: Cryptanalysis and improvement of quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 14(12), 4593–4600 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Li, J., Zhou, H.F., Jia, L., Zhang, T.T.: An efficient protocol for the private comparison of equal information based on four-particle entangled W state and bell entangled states swapping. Int. J. Theor. Phys. 53(7), 2167–2176 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284(12), 3160–3163 (2011)

    Article  ADS  Google Scholar 

  20. Zhang, W.W., Li, D., Li, Y.B.: Quantum private comparison protocol with W states. Int. J. Theor. Phys. 53(5), 1723–1729 (2014)

    Article  Google Scholar 

  21. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283(7), 1561–1565 (2010)

    Article  ADS  Google Scholar 

  22. Lin, J., Tseng, H.Y., Hwang, T.: Intercept-resend attacks on Chen et al.’s quantum private comparison protocol and the improvements. Opt. Commun. 284(9), 2412–2414 (2011)

    Article  ADS  Google Scholar 

  23. Li, Y.B., Wang, T.Y., Chen, H.Y., et al.: Fault-tolerate quantum private comparison based on GHZ states and ECC. Int. J. Theor. Phys. 52(8), 2818–2825 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chang, Y.J., Tsai, C.W., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process. 12(2), 1077–1088 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Xu, G.A., Chen, X.B., Wei, Z.H., Li, M.J., Yang, Y.X.: An efficient protocol for the quantum private comparison of equality with a four-qubit cluster state. Int. J. Quant. Inform. 10(4), 1250045 (2012)

    Article  MathSciNet  Google Scholar 

  26. Sun, Z.W., Long, D.Y.: Quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 52(1), 212–218 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z.: A protocol for the quantum private comparison of equality with χ-type state. Int. J. Theor. Phys. 51(1), 69–77 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu,W.,Wang, Y.B., Jiang, Z.T., Cao, Y.Z., Cui, W.: New quantum private comparison protocol usingχ-type state. Int. J. Theor. Phys. 51(6), 1953–1960 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Lin, S., Guo, G.D., Liu, X.F.: Quantum private comparison of equality with χ-type entangled states. Int. J. Theor. Phys. 52(11), 4185–4194 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ye, T.Y., Ji, Z.X.: Two-party quantum private comparison with five-qubit entangled states. Int. J. Theor. Phys. 56(5), 1517–1529 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ji, Z.X., Ye, T.Y.: Quantum private comparison of equal information based on highly entangled six-qubit genuine state. Commun. Theor. Phys. 65(6), 711–715 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Liu, W., Wang, Y.B., Wang, X.M.: Multi-party quantum private comparison protocol usingd-dimensional basis states without entanglement swapping. Int. J. Theor. Phys. 53(4), 1085–1091 (2014)

    Article  MATH  Google Scholar 

  33. Luo, Q.B., Yang, G.W., She, K., Niu, W.N., Wang, Y.Q.: Multi-party quantum private comparison protocol based on d-dimensional entangled states. Quantum Inf. Process. 13(10), 2343–2352 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Wang, Q.L., Sun, H.X., Huang, W.: Multi-party quantum private comparison protocol with n-level entangled states. Quantum Inf. Process. 13(11), 2375–2389 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Ji, Z.X., Ye, T.Y.: Multi-party quantum private comparison based on the entanglement swapping of d-level cat states and d-level bell states. Quantum Inf. Process. 16(7), 177 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Chou, W.H., Hwang, T., Gu, J.: Semi-quantum private comparison protocol under an almost-dishonest third party. http://arxiv.org/pdf/quant-ph/160707961.pdf

  37. Thapliyala, K., Sharmab, R.D., Pathak, A.: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment. http://arxiv.org/pdf/quant-ph/160800101.pdf

  38. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A. 56(2), 1154–1162 (1997)

    Article  ADS  Google Scholar 

  39. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A. 65, 032302 (2002)

    Article  ADS  Google Scholar 

  40. Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with bell states and local unitary operations. Chin. Phys. Lett. 22(5), 1049–1052 (2005)

    Article  ADS  Google Scholar 

  41. Li, C.Y., Li, X.H., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23(11), 2896–2899 (2006)

    Article  ADS  Google Scholar 

  42. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author Lang Yan-Feng thanks Daughter Lang Duo-Zi for her support on this work. Funding by General Research Project of Department of Education of Zhejiang Province (Grant No.Y201840249) and Research Project of Department of Water Resources of Zhejiang Province (Grant No.RC1861) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Feng Lang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, YF. Quantum Gate-Based Quantum Private Comparison. Int J Theor Phys 59, 833–840 (2020). https://doi.org/10.1007/s10773-019-04369-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04369-0

Keywords

Navigation