Skip to main content
Log in

Optimizing Quantum Teleportation and Dense Coding via Mixed Noise Under Non-Markovian Approximation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Physicists are attracted to open-system dynamics, how quantum systems evolve, and how they can be protected from unnecessary environmental noise, especially when environmental memory effects are non-negligible, as with non-Markovian approximations. There are several methods to solve the master equation of non-Markovian cases and we obtain the solutions of the quantum-state-diffusion equation for a two-qubit system using the perturbation method under the influence of various types of environmental noise, including relaxation noise, dephasing noise and their mixture. It was found that by inducing dephasing noise into the relaxation process strengthens the correlation between qubits by restoring the entanglement lost in the environment, thereby making it possible to optimize quantum teleportation fidelity and dense coding capacity via mixed noise under non-Markovian approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ekert, A.K.: . Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: . Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bennett, C.H., Wiesner, S.J.: . Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  5. Shor, P.W.: . Phys. Rev. A 52, R2493 (1995)

    Article  ADS  Google Scholar 

  6. Steane, A.M.: . Phys. Rev. Lett. 77, 793 (1996b)

    Article  ADS  MathSciNet  Google Scholar 

  7. Lidar, D.A., Chuang, I.L., Whaley, K.B.: . Phys. Rev. Lett. 81, 2594 (1998)

    Article  ADS  Google Scholar 

  8. Kwiat, P.G., et al.: . Science 290, 498 (2000)

    Article  ADS  Google Scholar 

  9. Viola, L., Knill, E., Lloyd, S.: . Phys. Rev. Lett. 82, 2417 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  10. Yi, X.X., Sun, C.P.: . Phys. Lett. A 262, 287 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  11. Strunz, W.T., Yu, T.: . Phys. Rev. A 69, 052115 (2004)

    Article  ADS  Google Scholar 

  12. Corn, B., Yu, T.: . Quantum Inf. Process. 8, 565 (2009)

    Article  MathSciNet  Google Scholar 

  13. Jing, J., Wu, L.-A.: . Sci. Rep. 3, 2746 (2013)

    Article  ADS  Google Scholar 

  14. Jing, J., Li, R., You, J.Q., Yu, T.: . Phys. Rev. A 91, 022109 (2015)

    Article  ADS  Google Scholar 

  15. Beige, A., Braun, D., Tregenna, B.: . Knight, Phys. Rev. Lett. 85, 1762 (2000)

    Article  ADS  Google Scholar 

  16. Jing, J., Ting, Y., Lam, C.-H., You, J.Q., Wu, L.-A.: . Phys. Rev. A 97, 012104 (2018)

    Article  ADS  Google Scholar 

  17. Diósi, L., Gisin, N., Strunz, W.T.: . Phys.Rev.A 58, 1699 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  18. Yu, T., Diosi, L., Gisin, N., Strunz, W.T.: . Phys.Rev. A 60, 91 (1999)

    Article  ADS  Google Scholar 

  19. Chen, Yusui, You, J.Q., Ting, Y u: . Phys. Rev. A 90, 052104 (2014)

    Article  ADS  Google Scholar 

  20. Holevo, A.S.: . Probl. Inf. Transm. 9, 177 (1973)

    Google Scholar 

  21. Simayi, S., Abulizi, A., Yaermaimaiti, M., Jiang-Tao, C., Pan-Pan, Q.: . Chin. Phys. B 20(5), 050305 (2011)

    Article  ADS  Google Scholar 

  22. Boschi, D., Branca, S., De Martini, F., Hardy, L., Popescu, S.: . Phys. Rev. Lett. 80, 1121–1125 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  23. Marcikic, I., de Riedmatten, H., Tittel, W., Zbinden, H., Gisin, N.: . Nature 421, 509–513 (2003)

    Article  ADS  Google Scholar 

  24. Xiao-Song, M., et al.: . Nature 489, 269–273 (2012)

    Article  ADS  Google Scholar 

  25. Bouwmeester, D., Pan, J.-W., et al.: . Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  26. Jozsa, R.: . J. Mod. Opt. 41, 2315 (1994)

    Article  ADS  Google Scholar 

  27. Lombardi, E., Sciarrino, F., Popescu, S., et al.: . Phys. Rev. Lett. 88, 070402 (2002)

    Article  ADS  Google Scholar 

  28. Bowen, G., Bose, S.: . Phys. Rev. Lett. 87, 267901 (2001)

    Article  ADS  Google Scholar 

  29. Zhang, G.-F.: . Phys. Rev. A 75, 034304 (2007)

    Article  ADS  Google Scholar 

  30. Yu, T., Eberly, J.H.: . Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  31. Luo, S.L., Fu, S.S.: . Phys. Rev. A 82, 034302 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  32. Zhao, X., Jing, J., Corn, B., Yu, T.: . Phys. Rev. A 84, 032101 (2011)

    Article  ADS  Google Scholar 

  33. Özdemir, S.K., Bartkiewicz, K., Liu, Y.-X., Miranowicz, A.: . Phys. Rev. A 76, 042325 (2007)

    Article  ADS  Google Scholar 

  34. Misra, B., Sudarshan, E.C.G.: . J. Math. Phys. 18(4), 756–763 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by Key Research and Development Plan of Ministry of Science and Technology, China (No. 2018YFB1601402) and also supported by the National Natural Science Foundation of China (Grant No.11864042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An Min Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: : The Explicit Expressions of \(O\left (t,s,z^{*}\right )\)

Appendix: : The Explicit Expressions of \(O\left (t,s,z^{*}\right )\)

By using the consistency condition \(\frac {\delta }{\delta z_{s}^{*}}\frac {\partial \psi _{t}\left (z_{t}^{*}\right )}{\partial t}=\frac {\partial }{\partial t}\frac {\delta \psi _{t}\left (z^{*}\right )}{\delta z_{s}^{*}}\), \(O\left (t,s,z^{*}\right )\) can be expanded as:

$$ \begin{array}{@{}rcl@{}} \!\! O_{0}\left( t,s\right)\! & = & \!f_{1}\left( t,s\right)\sigma_{-}^{A} + f_{2}\left( t,s\right)\sigma_{-}^{B} + f_{3}\left( t,s\right){\sigma_{z}^{A}}\sigma_{-}^{B} + f_{4}\left( t,s\right)\sigma_{-}^{A}{\sigma_{z}^{B}} \end{array} $$
$$ O_{1}\left( t,s,s_{1}\right)=f_{5}\left( t,s,s_{1}\right)\left( 2\sigma_{-}^{A}\sigma_{-}^{B}\right) $$
(22)

Where values of \(f_{1\sim 5}\) are time-dependent, and are noise free. Substituting the O operator with its expanded form in (10), we can obtain the partial differential equations that determine the coefficients of the O operator:

$$ \begin{array}{@{}rcl@{}} \!\!\frac{\partial}{\partial t}f_{1}\left( t,s\right) & \!=&\!\!\left( i\omega_{A}\! + F_{1}\! + F_{3}\right)f_{1} + \left( \!F_{4} - F_{1}\right)f_{3} + \left( F_{3} + F_{4}\right)f_{4} - iF_{5}, \\ \!\!\frac{\partial}{\partial t}f_{2}\left( t,s\right) & \!=&\!\!\left( i\omega_{B} + F_{2} + F_{4}\right)f_{2} + \!\left( F_{4} + F_{3}\right)f_{3} + \left( F_{3} - F_{2}\right)f_{4} - iF_{5}, \\ \frac{\partial}{\partial t}f_{3}\left( t,s\right) & = \!&\left( i\omega_{B} + F_{2} + F_{4}\right)f_{3} + \!\left( F_{3} + F_{4}\right)f_{2} + \left( F_{3} - F_{2}\right)f_{1} - iF_{5}, \\ \frac{\partial}{\partial t}f_{4}\left( t,s\right) & = \!&\left( i\omega_{A} + F_{1} + F_{3}\right)f_{4} + \left( \!F_{3} + F_{4}f_{1}\right) + \left( F_{4} - F1\right)f_{2} - iF_{5}, \\ \frac{\partial}{\partial t}f_{5}\left( t,s,s_{1}\right) & \!\!=&\!\!\left( 2i\omega_{A}\! + \!2i\omega_{B} + \!F_{1} + \!F_{2} + \!F_{3} + \!F_{4}\right)f_{5}\! + \!F_{5}\left( f_{1} + \!f_{2} - \!f_{3} - \!f_{4}\right), \end{array} $$
(23)

where \(F_{j}\left (t\right )={{\int \limits }_{0}^{t}}dsG\left (t,s\right )f_{j}\left (t,s\right )\) \(\left (j=1,2,3,4\right )\), and \(F_{5}\left (t,s_{1}\right )={{\int \limits }_{0}^{t}}dsG\left (t-s\right )f_{5}\left (t,s,s_{1}\right )\), with the initial conditions for equation above:

$$ \begin{array}{@{}rcl@{}} f_{1}\left( t,s=t\right) & = & 1 \\ f_{2}\left( t,s=t\right) & = & 1 \\ f_{3}\left( t,s=t\right) & = & 0 \\ f_{4}\left( t,s=t\right) & = & 0 \\ f_{5}\left( t,s=t,s_{1}\right) & = & 0 \\ f_{5}\left( t,s,s_{1}=t\right) & = & -i\left[f_{3}\left( t,s\right)+f_{4}\left( t,s\right)\right]. \end{array} $$
(24)

After obtaining the coefficients \(f_{1\sim 5}\) and \(F_{1\sim 5}\), as determined by (23), then \(O\left (t,s,z^{*}\right )\) can be obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, A., Wang, A.M. & Abliz, A. Optimizing Quantum Teleportation and Dense Coding via Mixed Noise Under Non-Markovian Approximation. Int J Theor Phys 60, 1225–1236 (2021). https://doi.org/10.1007/s10773-021-04748-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04748-6

Keywords

Navigation