Skip to main content
Log in

Private Comparison Protocol for Multiple Semi-Quantum Users Based on Bell States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum private comparison has attracted the attention of many researchers in recent years, and it extends to two branches: semi-quantum private comparison and multi-party quantum private comparison, but there are not many studies on the combination of the two. Therefore, this paper proposes a multi-party semi-quantum private comparison protocol based on Bell states. This protocol uses the semi-honest third-party TP to judge the equality of private secret messages of classical users without divulging the real value. Among them, TP’s quantum ability is complete, but users are limited. Our protocol differs from other similar protocol s in two points: 1. The combination of “multi-party” and “semi-quantum”. 2. It can not only compare whether the secret messages of all users are equal, but also determine whether the secret messages of any two users are equal under the condition of allowing a large number of computations. Security analysis and efficiency analysis show that the protocol can resist both internal and external attacks, and it has ideal qubit efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum Cryptography: Public-Key Distribution and Coin Tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE Press, Bangalore (1984)

  2. Chen, B., Yan, L.: Quantum and semi-quantum blind signature schemes based on entanglement swapping. Int. J. Theor. Phys. 60, 4006–4014 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  3. Yang, C.W., Tsai, C.W.: Efficient and secure dynamic quantum secret sharing protocol based on bell states. Quantum Inf. Process. 19(5), (2020)

  4. Chen, X.B., Wen, Q.Y., Guo, F.Z., Sun, Y., Xu, G., Zhu, F.C.: Controlled quantum secure direct communication with W state. Int. J. Quantum Inf. 6(4), 899–906 (2008)

    Article  Google Scholar 

  5. Wei, C.Y., Cai, X.Q., Liu, B., et al.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67, 2–8 (2018)

    Article  MathSciNet  Google Scholar 

  6. Yao, A.C.: Protocols for Secure Computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science (FOCS’ 82), p. 160, Washington, DC (1982)

  7. Boudot, F., Schoenmakers, B., Traor’e, J.: A fair and efficient solution to the socialist millionaires’ problem. Discret. Appl. Math. (Special Issue on Coding and Cryptology). 111(1–2), 23–36 (2001)

    Article  MathSciNet  Google Scholar 

  8. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42(5), 055305 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  9. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A. 56(2), 1154–1162 (1996)

    Article  ADS  Google Scholar 

  10. Yang, Y.G., Xia, J., Jia, X., et al.: Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf. Process. 12(2), 877–885 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  11. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  12. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A. 79(3), 032341 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  13. Zhou, N.R., Zhu, K.N., Wang, Y.Q.: Three-party semi-quantum key agreement protocol. Int. J. Theor. Phys. 59, 663–676 (2020)

    Article  MathSciNet  Google Scholar 

  14. Zhang, M.H., Li, H.F., Xia, Z.Q., et al.: Semi-quantum secure direct communication using EPR pairs. Quantum Inf. Process. 16(5), 117 (2017)

    Article  ADS  Google Scholar 

  15. Yin, A., Chen, T.: Authenticated semi-quantum secret sharing based on GHZ-type states. Int. J. Theor. Phys. 60, 265–273 (2021)

    Article  MathSciNet  Google Scholar 

  16. Lin, P.H., Hwang, T., Tsai, C.W.: Efficient semi-quantum private comparison using single photons. Quantum Inf. Process. 18, 207 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  17. Chou, W.-H., Hwang, T., Gu, J.: Semi-quantum private comparison protocol under an almost-dishonest third party. Preprint arXiv :1607.07961 (2016)

  18. Thapliyala, K., Sharmab, R.D., Pathak, A.: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment. Int. J. Quant. Inform. (2016)

  19. Ye, T.Y., Ye, C.Q.: Measure-resend semi-quantum private comparison without entanglement. Int. J. Theor. Phys. 57(12), 3819–3834 (2018)

    Article  MathSciNet  Google Scholar 

  20. Chang, Y.J., Tsai, C.W., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process. 12, 1077–1088 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  21. Liu, W., Wang, Y.B., Wang, X.M.: Multi-party quantum private comparison protocol using d-dimensional basis states without entanglement swapping. Int. J. Theor. Phys. 53, 1085–1091 (2014)

    Article  MathSciNet  Google Scholar 

  22. Wang, Q.L., Sun, H.X., Huang, W.: Multi-party quantum private comparison protocol with n-level entangled states. Quantum Inf. Process. 13, 2375–2389 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  23. Hung, S.M., Hwang, S.L., Hwang, T., Kao, S.H.: Multiparty quantum private comparison with almost dishonest third parties for strangers. Quantum Inf. Process. 16(2), 36 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  24. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semi-quantum key distribution. Phys. Rev. A. 79, 032341 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  25. Krawec, W.O.: Mediated semi-quantum key distribution. Phys. Rev. A. 91(3), 032323 (2015)

    Article  ADS  Google Scholar 

  26. Tian-Yu, Y., Li-Zhen, J.: Improvement of controlled bidirectional quantum direct communication using a GHZ state[J]. Chin. Phys. Lett. 30(4), (2013)

  27. Gang, D., Zhang, F., Ma, C.: A new multi-party quantum private comparison protocol based on circle model[J]. Int. J. Theor. Phys. 58(10), (2019)

  28. Tian-Yu Ye,Jia-Li Hu. Multi-party quantum private comparison based on entanglement swapping of bell entangled states within d -level quantum system[J]. Int. J. Theor. Phys.,2021(prepublish)

  29. Jiang, L.Z.: Semi-quantum private comparison based on bell states. Quantum Inf. Process. 19, 180 (2020). https://doi.org/10.1007/s11128-020-02674-w

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Scientific Research Project of Liaoning Provincial Department of Education (Grant No. LJC202007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfeng Zhu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Liu, T. & Zhu, H. Private Comparison Protocol for Multiple Semi-Quantum Users Based on Bell States. Int J Theor Phys 61, 177 (2022). https://doi.org/10.1007/s10773-022-05167-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05167-x

Keywords

Navigation