Skip to main content
Log in

Mutual Trust Evaluation Model in Quantum Distributed Communication Network

  • RESEARCH
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum communication networks are gradually moving toward practicality, and giving rise to the rapid development of quantum information industry. The decentralized quantum distributed communication network (QDCN) based on quantum node information transfer can meet more realistic scenarios, such as direct node information interaction. However, the prerequisite for two nodes to complete secure and stable communication is the establishment of mutual trust evaluation between nodes. In this paper, a practical mutual trust evaluation model in QDCN is proposed to enhance node's privacy and security. Only Bell states measurement and two-qubit projective measurement are needed to complete the trust evaluation between two communication nodes. The quantum circuit diagram required for model building is presented, and the security analysis proved that this model has a better privacy and security performance and higher particle efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P, Townsend.: Quantum cryptography on multiuser optical fiber network. Nature, 385(6611), pp.47–49 (1997)

  2. G, Brassard., F, Bussieres., N, Godbout., et al.: Multi-user quantum key distribution using wave-length division multiplexing. Proc. of SPIE 2003, 5260(6), pp.149–153. (2003)

  3. Mehic, M., Maurhart, O., Rass, S., Voznak, M.: Implementation of quantum key distribution network simulation module in the network simulator ns-3. Quantum Inf. Process 16(10), 253 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Lu H, Li Z D, Yin X F, et al. Experimental quantum network coding[J]. npj Quantum Information, 5(1): 1–5. (2019)

  5. Chen, Y.A., Zhang, Q., Chen, T.Y., et al.: An integrated space-to-ground quantum communication network over 4,600 kilometres[J]. Nature 589(7841), 214–219 (2021)

    Article  ADS  Google Scholar 

  6. Qi Z, Li Y, Huang Y, et al. A 15-user quantum secure direct communication network[J]. Light: Science & Applications, 2021, 10(1): 1–8.

  7. Zhang, J., Jiang, M.: Butterfly network coding based on bidirectional hybrid controlled quantum communication[J]. Quantum Inf Process. 21(3), 1–15 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Joshi S K, Aktas D, Wengerowsky S, et al. A trusted node–free eight-user metropolitan quantum communication network[J]. Science advances, 2020, 6(36): eaba0959.

  9. Wei, C.Y., Cai, X.Q., Wang, T.Y., et al.: Error tolerance bound in QKD-based quantum private query[J]. IEEE J Sel Areas Commun 38(3), 517–527 (2020)

    Article  Google Scholar 

  10. Chang, Y., Zhang, S.B., Wan, G., et al.: Practical two-way QKD-based quantum private query with better performance in user privacy[J]. Int J Theor Phys 58(7), 2069–2080 (2019)

    Article  MATH  Google Scholar 

  11. Yang, H., Xiao, M.: Multi-user quantum private query[J]. Quantum Inf Process. 19(8), 1–13 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Jiang, D.H., Xu, Y.L., Xu, G.B.: Arbitrary quantum signature based on local indistinguishability of orthogonal product states[J]. Int J Theor Phys 58(3), 1036–1045 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Xin, X., He, Q., Wang, Z., et al.: Efficient arbitrated quantum signature scheme without entangled states[J]. Mod Phys Lett A 34(21), 1950166 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Xin, X., Ding, L., Li, C., et al.: Quantum public-key designated verifier signature[J]. Quantum Inf Process 21(1), 1–16 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  15. Karabulut E, Aysu A. Falcon down: Breaking falcon post-quantum signature scheme through side-channel attacks[C]//2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE, 2021: 691–696 (2021).

  16. Li, Z.H., Zubairy, M.S., Al-Amri, M.: Quantum secure group communication[J]. Sci Rep 8(1), 1–8 (2018)

    Google Scholar 

  17. Sheng, Y.B., Zhou, L., Long, G.L.: One-step quantum secure direct communication[J]. Sci Bull 67(4), 367–374 (2022)

    Article  Google Scholar 

  18. Qi R, Sun Z, Lin Z, et al.: Implementation and security analysis of practical quantum secure direct communication[J]. Light: Sci App. 8(1): 1–8 (2019).

  19. Sun, Z., Song, L., Huang, Q., et al.: Toward practical quantum secure direct communication: A quantum-memory-free protocol and code design[J]. IEEE Trans Commun 68(9), 5778–5792 (2020)

    Article  Google Scholar 

  20. Ye, Z.D., Pan, D., Sun, Z., et al.: Generic security analysis framework for quantum secure direct communication[J]. Front Phys. 16(2), 1–9 (2021)

    Article  Google Scholar 

  21. Luo, Y.H., Zhong, H.S., Erhard, M., et al.: Quantum teleportation in high dimensions[J]. Phys Rev Lett 123(7), 070505 (2019)

    Article  ADS  Google Scholar 

  22. Liu, S., Lou, Y., Jing, J.: Orbital angular momentum multiplexed deterministic all-optical quantum teleportation[J]. Nat Commun 11(1), 1–8 (2020)

    ADS  Google Scholar 

  23. Fiaschi, N., Hensen, B., Wallucks, A., et al.: Optomechanical quantum teleportation[J]. Nat Photonics 15(11), 817–821 (2021)

    Article  ADS  Google Scholar 

  24. Langenfeld, S., Welte, S., Hartung, L., et al.: Quantum teleportation between remote qubit memories with only a single photon as a resource[J]. Phys Rev Lett 126(13), 130502 (2021)

    Article  ADS  Google Scholar 

  25. Zhang, S.B., Xie, Z.H., Yin, et al.: Study on quantum trust model based on node trust evaluation[J]. Chin J Electron 26(3), 608–613 (2017)

  26. Zheng, T., Chang, Y., Zhang, S.: Quantum risk assessment model based on two three-qubit GHZ states[J]. Comput. Model. Eng. Sci. 124(2), 573–584 (2020)

    Google Scholar 

  27. Huang, H., Zhao, W., Zhang, X., et al.: Quantum Semi-trust Evaluation Model with Graph-based Quantum Walk Teleportation[J]. Int. J. Theor. Phys. 61(6), 1–11 (2022)

    Article  MathSciNet  Google Scholar 

  28. Guo, X., Breum, C.R., Borregaard, J., et al.: Distributed quantum sensing in a continuous-variable entangled network[J]. Nat. Phys. 16(3), 281–284 (2020)

    Article  Google Scholar 

  29. Ge, W., Jacobs, K., Eldredge, Z., et al.: Distributed quantum metrology with linear networks and separable inputs[J]. Phys. Rev. Lett. 121(4), 043604 (2018)

    Article  ADS  Google Scholar 

  30. Zhuang, Q., Preskill, J., Jiang, L.: Distributed quantum sensing enhanced by continuous-variable error correction[J]. New J. Phys. 22(2), 022001 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  31. González-Guillén, C.E., González Vasco, M.I., Johnson, F., et al.: An attack on zawadzki’s quantum authentication scheme[J]. Entropy 23(4), 389 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  32. Farouk, A., Batle, J., Elhoseny, M., et al.: Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states[J]. Front. Phys. 13(2), 1–18 (2018)

    Article  Google Scholar 

  33. Li, D., Wang, R., Baagyere, E.: Quantum teleportation of an arbitrary two-qubit state by using two three-qubit GHZ states and the six-qubit entangled state[J]. Quantum Inf. Process. 18(5), 1–15 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Bustard, P.J., Bonsma-Fisher, K., Hnatovsky, C., et al.: Toward a Quantum Memory in a Fiber Cavity Controlled by Intracavity Frequency Translation[J]. Phys. Rev. Lett. 128(12), 120501 (2022)

    Article  ADS  Google Scholar 

  35. George Theodorakopoulos and John S. Baras. 2004. Trust evaluation in ad-hoc networks. In Proceedings of the 3rd ACM workshop on Wireless security (WiSe '04). Association for Computing Machinery, New York, NY, USA, 1–10. https://doi.org/10.1145/1023646.1023648.

  36. Wenjun Jiang, Guojun Wang, Md Zakirul Alam Bhuiyan, and Jie Wu. 2016. Understanding Graph-Based Trust Evaluation in Online Social Networks: Methodologies and Challenges. ACM Comput. Surv. 49, 1, Article 10 (March 2017), 35 pages. https://doi.org/10.1145/2906151.

  37. Chiregi, M., Navimipour, N.J.: A comprehensive study of the trust evaluation mechanisms in the cloud computing. J Serv Sci Res 9, 1–30 (2017). https://doi.org/10.1007/s12927-017-0001-7

    Article  Google Scholar 

  38. Jingwen Wang, Xuyang Jing, Zheng Yan, Yulong Fu, Witold Pedrycz, and Laurence T. Yang. 2020. A Survey on Trust Evaluation Based on Machine Learning. ACM Comput. Surv. 53, 5, Article 107 (September 2021), 36 pages. https://doi.org/10.1145/3408292.

Download references

Acknowledgements

Authors want to thanks anonymous reviewers who help to improve this paper. This work is supported by the Industrial technology foundation public service platform project (grants number TC210H024), and the Industrial Internet Innovation Development Project (grants number TC200H01N).

Author information

Authors and Affiliations

Authors

Contributions

J.S wrote the main manuscript text and J.Q supported and reviewed the paper, and others participated in the discussion and checked the grammar of the article.

Corresponding author

Correspondence to Jin Qian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Zhu, D., Guan, Y. et al. Mutual Trust Evaluation Model in Quantum Distributed Communication Network. Int J Theor Phys 62, 89 (2023). https://doi.org/10.1007/s10773-023-05347-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05347-3

Keywords

Navigation