Skip to main content
Log in

Passivity and Corrosion of Cu–xZn (x = 10–40 wt%) Alloys in Borate Buffer Containing Chloride Ions

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical behaviour of Cu–xZn alloys and of Cu and Zn metals was studied by cyclic voltammetry and chronopotentiometry in borate buffer, pH = 9.2, with and without the addition of chloride ions in the range from 0.01 m to 1 m. In general, the shape of voltammograms of four Cu–xZn alloys with 10 – 40 wt.% of zinc resembles that of copper more than that of zinc. With increasing zinc content several characteristics of zinc are observed. In borate buffer containing chloride anions, Cu–xZn alloys are susceptible to pitting corrosion. The breakdown potential, E b , at which the current density in the passive region starts to increase abruptly, becomes more negative with increasing zinc content in the alloy. The general relationship E b  = a + b log cNaCl held in all cases, with constants a and b, however, being dependent on the zinc content of the alloy and on the chloride concentration. The corrosion resistance of Cu–xZn alloys was less than that of copper metal but significantly greater than that of zinc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.P. Pchelnikov A.D. Sitnikov I.K. Marshakov V.V. Losev (1981) Electrochim. Acta 26 591 Occurrence Handle10.1016/0013-4686(81)80025-4

    Article  Google Scholar 

  2. A.V. Polunin A.P. Pchelnikov V.V. Losev I.K. Marshakov (1982) Electrochim. Acta 27 467 Occurrence Handle10.1016/0013-4686(82)85025-1

    Article  Google Scholar 

  3. R.K. Dinnappa S.M. Mayanna (1987) Corros. Sci. 27 349 Occurrence Handle10.1016/0010-938X(87)90077-1

    Article  Google Scholar 

  4. S.H. Sanad H. Abbas A.A. Ismail K.M. El-Sobki (1985) Surf. Technol. 25 39 Occurrence Handle10.1016/0376-4583(85)90046-9

    Article  Google Scholar 

  5. H.C. Shih R.J. Tzou (1991) J. Electrochim. Soc. 138 958

    Google Scholar 

  6. V. Otieno-Alego G.A. Hope T. Notoya D.P. Schweinsberg (1996) Corros. Sci. 38 213 Occurrence Handle10.1016/0010-938X(96)00103-5

    Article  Google Scholar 

  7. A.M. Fenelon C.B. Breslin (2001) J. Appl. Electrochem. 31 509 Occurrence Handle10.1023/A:1017503031045

    Article  Google Scholar 

  8. M.M. Osman (2001) Mater. Chem. Psys. 71 12 Occurrence Handle10.1016/S0254-0584(00)00510-1

    Article  Google Scholar 

  9. A. Nagiub F. Mansfeld (2001) Corros. Sci. 43 2147 Occurrence Handle10.1016/S0010-938X(01)00006-3

    Article  Google Scholar 

  10. A.T. Cole R.C. Newman K. Sieradzki (1988) Corros. Sci. 28 109 Occurrence Handle10.1016/0010-938X(88)90012-1

    Article  Google Scholar 

  11. T. Shahrabi R.C. Newman K. Sieradzki (1993) J. Electrochim. Soc. 140 348

    Google Scholar 

  12. V.A. Kolotyrkin V.N. Chervyakov A.P. Pschelnikov V.V. Losev (1995) Prot. Met. 31 220

    Google Scholar 

  13. D. Tromans (1997) Corros. Sci. 39 1307 Occurrence Handle10.1016/S0010-938X(97)00030-9

    Article  Google Scholar 

  14. X. Guo K. Gao L. Qiao W. Chu (2001) Metal Mater. Trans. A 32A 309

    Google Scholar 

  15. B.S. Kim T. Piao S.N. Hoier S.M. Park (1995) Corros. Sci. 37 557 Occurrence Handle10.1016/0010-938X(94)00147-X

    Article  Google Scholar 

  16. I. Milošev H.-H. Strehblow (2003) J. Electrochem. Soc. 150 517 Occurrence Handle10.1149/1.1615997

    Article  Google Scholar 

  17. J. Morales G.T. Fernandez P. Esparza S. Gonzalez R.C. Salvarezza A.J. Arvia (1995) Corros. Sci. 37 211 Occurrence Handle10.1016/0010-938X(94)00108-I

    Article  Google Scholar 

  18. J. Morales G.T. Fernandez P. Esparza S. Gonzalez R.C. Salvarezza A.J. Arvia (1998) Corros. Sci. 40 177 Occurrence Handle10.1016/S0010-938X(97)00111-X

    Article  Google Scholar 

  19. J. Morales P. Esparza G.T. Fernandez S. Gonzalez J.E. Garcia J. Caceres R.C. Salvarezza A.J. Arvia (1995) Corros. Sci. 37 231 Occurrence Handle10.1016/0010-938X(94)00109-J

    Article  Google Scholar 

  20. A.L. Rudd C.B. Breslin (2000) Electrochim. Acta 45 4015 Occurrence Handle10.1016/S0013-4686(00)00496-5

    Article  Google Scholar 

  21. M. Pourbaix (1974) Atlas of Electrochemical Equilibria in Aqueous solutions NACE, Cebelcor Houston, Brussels

    Google Scholar 

  22. F.M. Al-Kharafi B.G. Ateya R.M. Abd Allah (2004) J. Appl. Electrochem. 34 47 Occurrence Handle10.1023/B:JACH.0000005616.41240.d0

    Article  Google Scholar 

  23. I. Milošev A. Minović (2001) Annali di Chimica 91 343 Occurrence Handle11507838

    PubMed  Google Scholar 

  24. H.-H. Strehblow H.-D. Speckman (1984) Werkst. Korros. 35 512 Occurrence Handle10.1002/maco.19840351104

    Article  Google Scholar 

  25. J. Gomez Becerra R.C. Salvarezza A.J. Arvia (1988) Electrochim. Acta 33 613 Occurrence Handle10.1016/0013-4686(88)80059-8

    Article  Google Scholar 

  26. H-H. Strehblow V. Maurice P. Marcus (2001) Electrochim. Acta 46 3755 Occurrence Handle10.1016/S0013-4686(01)00657-0

    Article  Google Scholar 

  27. D.D. Macdonald K.M. Ismail E. Sikora (1998) J. Electrochem. Soc. 145 3141

    Google Scholar 

  28. H. Mishima Mishima Lopez Particlede E. Santos C.P. Pauli ParticleDe K. Azumi N. Sato (1991) Electrochim. Acta 36 1491 Occurrence Handle10.1016/0013-4686(91)85339-9

    Article  Google Scholar 

  29. A.L. Rudd C.B. Breslin (2000) J. Electrochem. Soc. 147 1401 Occurrence Handle10.1149/1.1393368

    Article  Google Scholar 

  30. M.R. Gennero de Chialvo S.L. Marchiano A.J. Arvia (1984) J. Appl. Electrochem. 14 165 Occurrence Handle10.1007/BF00618735

    Article  Google Scholar 

  31. I. Filipović and P. Sabioncello, Laboratorijski priručnik, Zagreb, 1978.

  32. J. O’M Bockris and A.K.N. Reddy, ‘Modern Electrochemistry’, Vol. 2B, Electrodics in Chemistry, Engineering, Biology, and Environmental Science (Kluwer Academic/Plenum Publishers, New York, 2000).

  33. M. Metikoš-Huković I. Milošev (1992) J. Appl. Electrochem. 22 448 Occurrence Handle10.1007/BF01077548

    Article  Google Scholar 

  34. I. Milošev M. Metikoš-Huković (1999) J. Appl. Electrochem. 29 393 Occurrence Handle10.1023/A:1003426701670

    Article  Google Scholar 

  35. I. Milošev M. Metikoš-Huković M. Drogowska H. Menard L. Brossard (1992) J. Electrochem. Soc. 139 2409

    Google Scholar 

  36. P. Druska H-H. Strehblow (1995) Surf. Inter. Anal. 23 440 Occurrence Handle10.1002/sia.740230703

    Article  Google Scholar 

  37. F.H. Assaf A.M. Zaky S.S. abd El-Rehim (2002) Appl. Surf. Sci. 178 18 Occurrence Handle10.1016/S0169-4332(01)00462-7

    Article  Google Scholar 

  38. I. Milošev M. Metikoš-Huković (1997) Electrochim. Acta 42 1537 Occurrence Handle10.1016/S0013-4686(96)00315-5

    Article  Google Scholar 

  39. R.M. El-Sherif K.M. Ismail W.A. Badawy (2004) Electrochim. Acta 49 5139 Occurrence Handle10.1016/j.electacta.2004.06.027

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Milošev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikić, T.K., Milošev, I. & Pihlar, B. Passivity and Corrosion of Cu–xZn (x = 10–40 wt%) Alloys in Borate Buffer Containing Chloride Ions. J Appl Electrochem 35, 975–984 (2005). https://doi.org/10.1007/s10800-005-6726-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-6726-x

Key words

Navigation