Skip to main content
Log in

Supported Pt and Pt–Ru catalysts prepared by potentiostatic electrodeposition for methanol electrooxidation

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Methanol electrooxidation was investigated on Pt–Ru electrocatalysts supported on glassy carbon. The catalysts were prepared by electrodeposition from solutions containing chloroplatinic acid and ruthenium chloride. Bulk composition analysis of the Pt–Ru catalyst was performed using an X-ray detector for energy dispersive spectroscopy analysis (EDX). Three different compositions were analyzed in the range 0–20 at.% Ru content. Tafel plots for the oxidation of methanol in solutions containing 0.1–2 M CH3OH, and in the temperature range 23–50 °C showed a reasonably well-defined linear region. The slope of the Tafel plots was found to depend on the ruthenium composition. The lower slope was determined for the Pt catalyst, varying between 100 and 120 mV dec−1. The values calculated for the alloys were higher, ranging from 120 to 140 mV dec−1. The reaction order for methanol varies from 0.5 to 0.8, increasing with the ruthenium content. The activation energy calculated from Arrhenius plots was found to change with the catalyst composition, showing a lower value around 30 kJ mol−1 for the alloys, and a higher value, of 58.8 kJ mol−1, for platinum. The effect of ruthenium content is explained by the bifunctional reaction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Coutanceau C, Rakotondrainibe AF, Lima A, Garnier E, Pronier S, Léger J-M, Lamy C (2004) J Appl Electrochem 34:61

    Article  CAS  Google Scholar 

  2. Wilson MS, Gottesfeld S (1992) J Appl Electrochem 22:1

    Article  CAS  Google Scholar 

  3. Gottesfeld S, Zawodzinski TA (1997) In: Alkire RC, Gerischer H, Kolb DM, Tobias CW (eds) Advances in electrochemical science and engineering, vol 5. Wiley-VCH, Weinheim, Germany, p 125

  4. Sasikumar G, Ihm JW, Ryu H (2004) Electrochim Acta 50:601

    Article  CAS  Google Scholar 

  5. Wei ZD, Chan SH (2004) J Electroanal Chem 569:23

    Article  CAS  Google Scholar 

  6. Rao CRK, Trivedi DC (2005) Coord Chem Rev 249:613

    Article  CAS  Google Scholar 

  7. Wei ZD, Chan SH, Li LL, Cai HF, Xia ZT, Sun CX (2005) Electrochim Acta 50:2279

    Article  CAS  Google Scholar 

  8. Shen M, Roy S, Scott K (2005) J Appl Electrochem 35:1103

    Article  CAS  Google Scholar 

  9. Hogarth MP, Punk J, Shukla AK, Hamnett A (1994) J Appl Electrochem 24:85

    Article  CAS  Google Scholar 

  10. Duarte MME, Pilla AS, Sieben JM, Mayer CE (2006) Electrochem Comm 8:159

    Article  CAS  Google Scholar 

  11. Maillard F, Gloaguen F, Léger J-M (2003) J Appl Electrochem 33:1

    Article  CAS  Google Scholar 

  12. Aramata A, Kodera T, Masuda M (1988) J Appl Electrochem 18:577

    Article  CAS  Google Scholar 

  13. Niu L, Li Q, Wei F, Wu S, Liu P, Cao X (2005) J Electroanal Chem 578:331

    Article  CAS  Google Scholar 

  14. Lee C-H, Lee C-W, Kim D-I, Bae S-E (2002) Int J Hydrogen Energy 27:445

    Article  CAS  Google Scholar 

  15. Tusseeva EK, Mikhaylova AA, Khazova OA, Kourtakis K-D (2004) Russian J Electrochem 40:1146

    Article  CAS  Google Scholar 

  16. Chrzanowski W, Wieckowski A (1997) Langmuir 13:5974

    Article  CAS  Google Scholar 

  17. Vigier F, Gloaguen F, Léger J-M, Lamy C (2001) Electrochim Acta 46:4331

    Article  CAS  Google Scholar 

  18. Iúdice de Souza JP, Iwasita T, Narta EC, Vielstich W (2000) J Appl Electrochim 30:43

    Article  Google Scholar 

  19. Rodríguez-Nieto FJ, Morante-Catacora TY, Cabrera CR (2004) J Electroanal Chem 571:15

    Article  CAS  Google Scholar 

  20. Selvaraju T, Ramaraj R (2005) J Electroanal Chem 585:290

    Article  CAS  Google Scholar 

  21. Ross PN Jr (1998) In: Lipkowski J, Ross PN (eds) Electrocatalysis. Wiley-VCH, New York, p 43

  22. Wasmus S, Küver A (1999) J Electroanal Chem 461:14

    Article  CAS  Google Scholar 

  23. Liu H, Song C, Zhang L, Zhang J, Wang H, Wilkinson DP (2006) J Power Sources 155:95

    CAS  Google Scholar 

  24. Gojković SL, Vidaković TR, Durović DR (2003) Electrochim Acta 48:3607

    Article  CAS  Google Scholar 

  25. Gasteiger HA, Markovic N, Ross PN, Cairns E (1994) J Electrochem Soc 141:1795

    Article  CAS  Google Scholar 

  26. Green CL, Kucernak A (2002) J Phys Chem B 106:1036

    Article  CAS  Google Scholar 

  27. Vuković M, Čukman D (1999) J Electroanal Chem 474:167

    Article  Google Scholar 

  28. Hadži-Jordanov S, Argerstein H, Vuković M, Conway BE (1977) J Phys Chem 81:2271

    Article  Google Scholar 

  29. Hepel T, Pollak FH, O’Grady WE (1984) J Electrochem Soc 131:2094

    Article  CAS  Google Scholar 

  30. Watanabe M, Motoo S (1975) J Electroanal Chem 60:267

    Article  CAS  Google Scholar 

  31. Chu D, Gilman S (1996) J Electrochem Soc 143:1685

    Article  CAS  Google Scholar 

  32. Tripković AV, Popović KD, Grgur BN, Blizanac B, Ross PN, Marković NM (2002) Electrochim Acta 47:3707

    Article  Google Scholar 

  33. He C, Kunz HR, Fenton JM (1997) J Electrochem Soc 144:970

    Article  Google Scholar 

  34. Rauhe BR, McLarnon FR, Cairns E (1995) J Electrochem Soc 142:1073

    Article  CAS  Google Scholar 

  35. Wang K, Gasteiger HA, Markovic NM, Ross PN Jr (1996) Electrochim Acta 41:2587

    Article  CAS  Google Scholar 

  36. Bagotzky VS, Vassilyev YB (1967) Electrochim Acta 12:1323

    Article  Google Scholar 

  37. Seiler T, Savinova ER, Friedrich KA, Stimming U (2004) Electrochim Acta 49:3927

    Article  CAS  Google Scholar 

  38. Jusys Z, Behm RJ (2001) J Phys Chem B 105:10874

    Article  CAS  Google Scholar 

  39. Vidaković T, Christov M, Sundmacher K (2005) J Electroanal Chem 580:105

    Article  CAS  Google Scholar 

  40. Tripković AV, Štrbac S, Popović KD (2003) Electrochim Comm 5:484

    Article  CAS  Google Scholar 

  41. Léger J-M (2001) J Appl Electrochem 31:767

    Article  Google Scholar 

  42. Gojković SL, Vidaković TR (2001) Electrochim Acta 47:633

    Article  Google Scholar 

  43. Gojković SL (2004) J Electroanal Chem 573:271

    Article  CAS  Google Scholar 

  44. Tripković AV, Popović KD, Lović JD, Jovanović VM, Kowal A (2004) J Electroanal Chem 572:119

    Article  CAS  Google Scholar 

  45. Christensen PA, Hammett A, Trougton GL (1993) J Electroanal Chem 362:207

    Article  CAS  Google Scholar 

  46. Méli G, Léger J-M, Lamy C, Durand R (1993) J Appl Electrochem 23:197

    Article  Google Scholar 

  47. Kwasniewski VJ, Schmidt DL (1992) Surf Sci 274:329

    Article  CAS  Google Scholar 

  48. Davies JC, Hayden BE, Pegg DJ, Rendall ME (2002) Surf Sci 496:110

    Article  CAS  Google Scholar 

  49. Arico A, Srinivasan S, Antonucci V (2001) Fuel Cells 1:133

    Article  CAS  Google Scholar 

  50. Khazova O, Mikhailova A, Skundin A, Tuseeva E, Havranek A, Wippermann K (2002) Fuel Cells 2:99

    Article  CAS  Google Scholar 

  51. Jusys Z, Behm RJ (2001) J Phys Chem B 105:10874

    Article  CAS  Google Scholar 

  52. Iwasita T, Vielstich W, Santos E (1987) J Electroanal Chem 229:367

    Article  CAS  Google Scholar 

  53. Willsau J, Wolter O, Heitbaum J (1985) J Electroanal Chem 185:163

    Article  CAS  Google Scholar 

  54. Jarvi TD, Stuve E M (1998) In: Lipkowski J, Ross PN (eds) Electrocatalysis. Wiley-VCH, USA, p 75

Download references

Acknowledgements

This work was supported by ANPCYT grant No 10-11133, UNS grant 24/M097 and CIC. J.M.S. is grateful to the CONICET for a doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. E. Duarte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sieben, J.M., Duarte, M.M.E. & Mayer, C.E. Supported Pt and Pt–Ru catalysts prepared by potentiostatic electrodeposition for methanol electrooxidation. J Appl Electrochem 38, 483–490 (2008). https://doi.org/10.1007/s10800-007-9462-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-007-9462-6

Keywords

Navigation