Skip to main content
Log in

Computational and electrochemical investigation for corrosion inhibition of nickel in molar nitric acid by piperidines

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The adsorption and corrosion inhibition behaviour of four selected piperidine derivatives, namely piperidine (pip), 2-methylpiperidine (2mp), 3-methylpiperidine (3mp), and 4-methylpiperidine (4mp) at nickel in 1.0 M HNO3 solution were studied computationally by the molecular dynamics simulation and quantum chemical calculations and electrochemically by Tafel and impedance methods. The results indicate a strong dependence of the inhibition performance on the nature of the metal surface, in addition to the structural effects of piperidines. Inhibition is accomplished by adsorption of piperidines on the metal surface without detectable changes in the chemistry of corrosion. Adsorption is predominantly chemisorptive in the active region and by hydrogen bond formation in the passive region. The potential of zero charge (PZC) of the nickel electrode was determined in 1.0 M HNO3 solutions in the absence and presence of 10−2 M 2mp, and the electrostatic (physical) adsorption was discussed. The inhibition efficiency of these compounds increases in the order: 4mp > 3mp > 2mp > pip. Molecular simulation studies were applied to optimize the adsorption structures of piperidine derivatives. The nickel/inhibitor/solvent interfaces were simulated and the charges on the inhibitor molecules as well as their structural parameters were calculated in the presence of solvent effects. Quantum chemical calculations based on the ab initio method were performed to determine the relationship between the molecular structure of piperidines and their inhibition efficiency. Results obtained from Tafel and impedance methods are in good agreement and confirm theoretical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Li QK, Zhang Y, Chu WY (2002) Comput Mater Sci 25:510

    Article  CAS  Google Scholar 

  2. San-Miguel MA, Rodger PM (2000) J Mo Struct (Theochem) 506:263

    Google Scholar 

  3. Bartley J, Huynh N, Bottle SE, Flitt H, Notoya T, Schweinsberg DP (2003) Corros Sci 45:81

    Article  Google Scholar 

  4. Takahashi M, Qi Y, Nitta H, Nishikawa N, Ohno T (2004) Sci Tech Adv Mater 5:673

    Article  CAS  Google Scholar 

  5. Khaled KF (2008) Electrochim Acta 53:3484

    Article  CAS  Google Scholar 

  6. Went W, Feller HG (1970) Z Metallik 61:178

    Google Scholar 

  7. Garz I, Glazer B (1974) Corros Sci 14:353

    Article  CAS  Google Scholar 

  8. Kesten M, Sussek G, Werk U (1976) Korros 77

  9. Barkalatsora LA, Pshenicknikov AG (1976) Electrochimiya 12:42

    Google Scholar 

  10. Nobe K (1975) MITS Gov. Rep. Announc. Index US. vol 75, p 71

  11. Singh MM, Kumar A (1995) Portugaliae Electrochim Acta 3:173

    Google Scholar 

  12. Kumar A, Patnaik SK, Singh MM (1998) Mater Chem Phys 56:243

    Article  CAS  Google Scholar 

  13. Stupniek-Lisac E, Karulin M (1984) Electrochim Acta 29:1339

    Article  Google Scholar 

  14. Said F, Souissi N, Es-Salah K, Hajjaji N, Triki E, Srhiri A (2007) J Mater Sci 42:9070

    Article  CAS  Google Scholar 

  15. Sun H, Ren P, Fried JR (1998) Comput Theor Polym Sci 8:229

    Article  CAS  Google Scholar 

  16. Roothaan CCJ (1951) Rev Mod Phys 23:69

    Article  CAS  Google Scholar 

  17. Thiel W (2000) Modern methods and algorithms of quantum chemistry (NIC Series) vol 3, p 261

  18. HyperChem, Hypercube, Inc., Gainesville, 2002.

  19. Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251

    Article  CAS  Google Scholar 

  20. Dewar MJS, Liotard DA (1990) J Mol Struct (Theochem) 206:123

    Article  Google Scholar 

  21. Leunberger DG (1973) Introduction to linear and non-linear programming. Addison-Wesley, Don Mills, Ont

    Google Scholar 

  22. Rodrigues-Valdez LM, Villamisar W, Casales M, Gonzalez-Rodriguez JG, Martnez-Villafane A, Martinez L, Glossman-Mitnik D (2006) Corros Sci 48:4053

    Article  CAS  Google Scholar 

  23. Lukovits L, Kalman E, Zucchi F (2001) Corrosion 57:3

    CAS  Google Scholar 

  24. Sastri VS, Perumareddi JR (1997) Corrosion 53:617

    CAS  Google Scholar 

  25. Duda Y, Fovea-Rueda R, Galicia M, Beltran HI, Zamudio-Rivera LS (2005) J Phys Chem B 109:22674

    Article  CAS  Google Scholar 

  26. Fang J, Li J (2002) J Mol Struct (Theochem) 593:179

    Article  CAS  Google Scholar 

  27. Bereket G, Hür E, Öğretir C (2002) J Mol Struct (Theochem) 578:79

    Article  CAS  Google Scholar 

  28. Zhao P, Liang Q, Li Y (2005) Appl Surf Sci 252:1596

    Article  CAS  Google Scholar 

  29. Pearson RG (1986) Proc Nati Acad Sci 83:8440

    Article  CAS  Google Scholar 

  30. Pearson RG (1988) Inorg Chem 27:734

    Article  CAS  Google Scholar 

  31. Lukovits I, Kalman E, Zucchi F (2001) Corrosion 57:3

    CAS  Google Scholar 

  32. Goncalves RS, Azombuja DS, Lucho AMS (2002) Corros Sci 44:467

    Article  CAS  Google Scholar 

  33. Juttner K (1990) Electrochim Acta 35:1501

    Article  Google Scholar 

  34. Stoynov Z (1990) Electrochim Acta 35:1493

    Article  Google Scholar 

  35. Khaled KF (2006) Appl Surf Sci 252:4120

    Article  CAS  Google Scholar 

  36. Amin MA (2006) J Appl Electrochem 36:215

    Article  CAS  Google Scholar 

  37. Hassan HH, Abdelghani E, Amin MA (2007) Electrochim Acta 52:6359

    Article  CAS  Google Scholar 

  38. Abd El-Rehim SS, El-Sherbini EEF, Bayoumi RS (2007) Electrochim Acta 52:3588

    Article  CAS  Google Scholar 

  39. Mehaute AH, Grepy G (1989) Solid State Ionics 910:17

    Google Scholar 

  40. Reinhard G, Rammet U (1985) Proceedings of the 6th European Symposium on Corrosion Inhibitors. Ferrara, p 831

  41. Lukomska A, Sobkowski J (2004) J Electroanal Chem 567:95

    Article  CAS  Google Scholar 

  42. Incorvia MJ, Contarini S (1989) J Electrochem Soc 136:2493

    Article  CAS  Google Scholar 

  43. Karman FH, Felhosi I, Kalman E, Cserny I, Kover L (1998) Electrochim Acta 43:69

    Article  CAS  Google Scholar 

  44. Braun RD, Lopez EE, Voller DP (1993) Corros Sci 34:1251

    Article  CAS  Google Scholar 

  45. Banejee G, Malhotra SN (1992) Corrosion 481:10

    Article  Google Scholar 

  46. Antropov LI (1962) The 1st International Congress of Metallic Corrosion. Butter worths, London, p 147

  47. Aramaki K, Uehre J, Nishihare H (1990) Proceedings of the 11th International Corrosion Congress, vol 3, Florence, Italy p 331

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. F. Khaled.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khaled, K.F., Amin, M.A. Computational and electrochemical investigation for corrosion inhibition of nickel in molar nitric acid by piperidines. J Appl Electrochem 38, 1609–1621 (2008). https://doi.org/10.1007/s10800-008-9604-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9604-5

Keywords

Navigation