Skip to main content
Log in

Design of a reference electrode for high-temperature PEM fuel cells

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, we present the design of an external reference electrode for high-temperature PEM fuel cells. The connection between the reference electrode with one of the fuel cell electrodes is realized by an ionic connector. Using the same material for the ionic connection as for the fuel cell membrane gives us the advantage to reach temperatures above 100 °C without destroying the reference electrode. This configuration allows for the separation of the anode and cathode overpotential in a working fuel cell system. In addition to the electrode overpotentials in normal hydrogen/air operation, the influence of CO and CO + H2O in the anode feed on the fuel cell potentials was investigated. When CO poisons the anode catalyst, not only the anode potential increased, but also the cathode overpotential, due to fewer protons reaching the cathode. By the use of synthetic reformate containing hydrogen, carbon monoxide and water on the anode, fuel cell voltage oscillations were observed at high constant current densities. The reference electrode measurements showed that the fuel cell oscillations were only related to reactions on the anode side influencing the anode overpotential. The cathode potential, in contrast, was only negligibly affected by the oscillations under the applied conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Behling NH (2013) History of phosphoric acid fuel cells. In: Current technology challenges and future research needs, 1st edn. Elsevier, Amsterdam, pp 53–134

  2. Hart D, Hörmandinger G (1998) Environmental benefits of transport and stationary fuel cells. J Power Sources 71:348–353

    Article  CAS  Google Scholar 

  3. Larminie J, Dicks A (2003) Medium and high temperature fuel cells. In: fuel cell systems explained, 2nd edn. John Wiley & Sons Ltd., Weinheim, pp 163–187

  4. Wainright JS, Wang J-T, Weng D, Savinell RF, Litt M (1995) Acid-doped polybenzimidazoles: a new polymer electrolyte. J Electrochem Soc 142:L121–L123

    Article  CAS  Google Scholar 

  5. Li Q, Jensen JO, Savinell RF, Bjerrum NJ (2009) High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog Polym Sci 34(5):449–477

    Article  CAS  Google Scholar 

  6. Li Q, He R, Gao J-A, Jensen JO, Bjerrum NJ (2003) The CO poisoning effect in PEMFCs operational at temperatures up to 200 °C. J Electrochem Soc 150:A1599–A1605

    Article  CAS  Google Scholar 

  7. Zhang J, Xie Z, Zhang J, Tang Y, Song C, Navessin T, Shi Z, Song D, Wang H, Wilkinson DP, Liu Z-S, Holdcroft S (2006) High temperature PEM fuel cells. J Power Sources 160(2):872–891

    Article  CAS  Google Scholar 

  8. Schmidt TJ, Baurmeister J (2008) Properties of high-temperature PEFC Celtec®-P 1000 MEAs in start/stop operation mode. J Power Sources 176(2):428–434

    Article  CAS  Google Scholar 

  9. Hansen JB (2003) Methanol reformer design considerations. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells, vol. 3 fuel cell technology and applications. Wiley, Weinheim, pp 141–148

    Google Scholar 

  10. Larminie J, Dicks A (2003) Fuelling fuel cells. In: Fuel cell systems explained, 2nd edn. Wiley, Weinheim, pp 229–307

  11. Sugishima N, Hinatsu JT, Foulkes FR (1994) Phosphorous acid impurities in phosphoric acid fuel cell electrolytes. J Electrochem Soc 141(12):3325–3331

    Article  CAS  Google Scholar 

  12. Ye S, Kita H, Aramata A (1992) Hydrogen and anion adsorption at platinum single crystal electrodes in phosphate solutions over a wide range of pH. J Electroanal Chem 333(1–2):299–312

    CAS  Google Scholar 

  13. He Q, Yang X, Chen W, Mukerjee S, Koel B, Chen S (2010) Influence of phosphate anion adsorption on the kinetics of oxygen electroreduction on low index Pt(hkl) single crystals. Phys Chem Chem Phys 12(39):12544–12554

    Article  CAS  Google Scholar 

  14. Zelenay P, Scharifker BR, Gervasio D, Bockris JO′M (1986) A comparison of the properties of CF3SO3H and H3PO4 in relation to fuel cells. J Electrochem Soc 133(11):2262–2267

    Article  CAS  Google Scholar 

  15. Weber M, Nart FC, Moraes IR, Iwasita T (1996) Adsorption of phosphate species on Pt(111) and Pt(100) as studied by in situ FTIR spectroscopy. J Phys Chem 100(51):19933–19938

    Article  CAS  Google Scholar 

  16. Santos MC, Miwa DW, Machado SAS (2000) Study of anion adsorption on polycrystalline Pt by electrochemical quartz crystal microbalance. Electrochem Commun 2:692–696

    Article  CAS  Google Scholar 

  17. He Q, Shyam B, Ramaker D, Mukerjee S (2013) Mitigating phosphate anion poisoning of cathodic Pt/C catalysts in phosphoric acid fuel cells. J Phys Chem C 117(10):4877–4887

    Article  CAS  Google Scholar 

  18. Büchi FN, Scherer GG (2001) Investigation of the transversal water profile in Nafion membranes in polymer electrolyte fuel cells. J Electrochem Soc 148(3):A183

    Article  Google Scholar 

  19. Kuhn H, Andreaus B, Wokaun A, Scherer GG (2006) Electrochemical impedance spectroscopy applied to polymer electrolyte fuel cells with a pseudo reference electrode arrangement. Electrochim Acta 51(8–9):1622–1628

    Article  CAS  Google Scholar 

  20. Mitsuda K, Murahashi T (1991) Air and fuel starvation of phosphoric acid fuel cells: a study using a single cell with multi-reference electrodes. J Appl Electrochem 21(6):524–530

    Article  CAS  Google Scholar 

  21. Adler SB, Henderson BT, Wilson MA, Taylor DM, Richards RE (2000) Reference electrode placement and seals in electrochemical oxygen generators. Solid State Ionics 134:35–42

    Article  CAS  Google Scholar 

  22. Li G, Pickup PG (2004) Measurement of single electrode potentials and impedances in hydrogen and direct methanol PEM fuel cells. Electrochim Acta 49(24):4119–4126

    Article  CAS  Google Scholar 

  23. Siroma Z, Kakitsubo R, Fujiwara N, Ioroi T, Yamazaki S-I, Yasuda K (2006) Compact dynamic hydrogen electrode unit as a reference electrode for PEMFCs. J Power Sources 156(2):284–287

    Article  CAS  Google Scholar 

  24. Li G, Pickup PG (2006) Analysis of performance losses of direct ethanol fuel cells with the aid of a reference electrode. J Power Sources 161(1):256–263

    Article  CAS  Google Scholar 

  25. Liu Z, Wainright J, Huang W, Savinell RF (2004) Positioning the reference electrode in proton exchange membrane fuel cells: calculations of primary and secondary current distribution. Electrochim Acta 49(6):923–935

    Article  CAS  Google Scholar 

  26. He W, Nguyen TV (2004) Edge effects on reference electrode measurements in PEM fuel cells. J Electrochem Soc 151(2):A185–A195

    Article  CAS  Google Scholar 

  27. Hinds G, Brightman E (2012) In situ mapping of electrode potential in a PEM fuel cell. Electrochem Commun 17:26–29

    Article  CAS  Google Scholar 

  28. Heinzel A, Bandlamudi G, Lehnert W (2009) Fuel cells—proton-exchange membrane fuel cells | high temperature PEMFCs:951–957

  29. Daletou MK, Kallitsis JK, Voyiatzis G, Neophytides SG (2009) The interaction of water vapors with H3PO4 imbibed electrolyte based on PBI/polysulfone copolymer blends. J Membr Sci 326(1):76–83

    Article  CAS  Google Scholar 

  30. Igarashi H, Fujino T, Watanabe M (1995) Hydrogen electro-oxidation on platinum catalysts in the presence of trace carbon monoxide. J Electroanal Chem 391(1–2):119–123

    Google Scholar 

  31. Dixon D, Habereder A, Farmand M, Kaserer S, Roth C, Ramaker DE (2012) Space resolved, in Operando X-ray absorption spectroscopy: investigations on both the anode and cathode in a direct methanol fuel cell. J Phys Chem C 116(13):7587–7595

    Article  CAS  Google Scholar 

  32. Bergmann A, Gerteisen D, Kurz T (2010) Modelling of CO poisoning and its dynamics in HTPEM fuel cells. Fuel Cells 10(2):278–287

    Article  CAS  Google Scholar 

  33. Schmidt TJ, Grgur B, Markovic N, Ross PN (2001) Oscillatory behavior in the electrochemical oxidation of formic acid on Pt(100): rotation and temperature effects. J Electroanal Chem 500(1–2):36–43

    CAS  Google Scholar 

  34. Malkhandi S, Bonnefont A, Krischer K (2009) Dynamic instabilities during the continuous electro-oxidation of CO on poly- and single crystalline Pt electrodes. Surf Sci 603(10–12):1646–1651

    Article  CAS  Google Scholar 

  35. Malkhandi S, Bauer P, Bonnefont A, Krischer K (2013) Mechanistic aspects of oscillations during CO electrooxidation on Pt in the presence of anions: experiments and simulations. Catal Today 202:144–153

    Article  CAS  Google Scholar 

  36. Rohland B, Plzak V (1999) The PEMFC-integrated CO oxidation—a novel method of simplifying the fuel cell plant. J Power Sources 84:183–186

    Article  CAS  Google Scholar 

  37. Smolinka T (2005) Untersuchungen an einer mit Reformat betriebenen PEM-Brennstoffzelle. Dissertation, University of Ulm, Germany

  38. Farrell C, Gardner C, Ternan M (2007) Experimental and modelling studies of CO poisoning in PEM fuel cells. J Power Sources 171(2):282–293

    Article  CAS  Google Scholar 

  39. Kadyk T, Kirsch S, Hanke-Rauschenbach R, Sundmacher K (2011) Autonomous potential oscillations at the Pt anode of a polymer electrolyte membrane fuel cell under CO poisoning. Electrochim Acta 56(28):10593–10602

    Article  CAS  Google Scholar 

  40. Wakisaka M, Suzuki H, Mitsui S, Uchida H, Watanabe M (2009) Identification and quantification of oxygen species adsorbed on Pt(111) single-crystal and polycrystalline Pt electrodes by photoelectron spectroscopy. Langmuir 25(4):1897–1900

    Article  CAS  Google Scholar 

  41. Melke J, Schoekel A, Gerteisen D, Dixon D, Ettingshausen F, Cremers C, Roth C, Ramaker DE (2012) Electrooxidation of ethanol on Pt. An in Situ and time-resolved XANES study. J Phys Chem C 116(4):2838–2849

    Article  CAS  Google Scholar 

  42. Siegmeier J, Baba N, Krischer K (2007) Bistability and oscillations during electrooxidation of H2-CO mixtures on Pt: modeling and bifurcation analysis. J Phys Chem C 111(36):13481–13489

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Maria Daletou from Advent (Greece) and Dr. Tomáš Klicpera from Fumatech (Germany) for the preparation of the MEAs. Dr. Dietmar Gerteisen (Fraunhofer ISE, Freiburg, Germany) is gratefully acknowledged for the helpful discussions as well as Sebastian Lang (TU Darmstadt) for his experienced PBI production. Financial support for this effort was provided by the EU project DEMMEA, Seventh Framework Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Roth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaserer, S., Rakousky, C., Melke, J. et al. Design of a reference electrode for high-temperature PEM fuel cells. J Appl Electrochem 43, 1069–1078 (2013). https://doi.org/10.1007/s10800-013-0567-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-013-0567-9

Keywords

Navigation