Skip to main content
Log in

Surface deposition of Ag and Au nano-isles on ZnO thin films yields enhanced photoelectrochemical splitting of water

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Nanostructured zinc oxide thin films, prepared by sol–gel, were subjected to surface loading of silver/gold nano-isles by controlled electrodeposition, using aqueous solutions (10−2 M) of silver nitrate and chloroauric acid as precursor. The deposition potentials were, respectively, −400 and −200 mV for silver and gold depositions, as the deposition time varied from 5 to 60 s. Pristine samples (i.e., samples with no deposition of metal nano-isles) were also obtained for comparison. X-ray diffractometry indicated dominant evolution of wurtzite zinc oxide phase, with a possible diffusion of silver/gold into zinc oxide lattice. However, changes in the band gap energy were insignificant. Atomic force microscopic and scanning electron microscopic analyses revealed the surface topography and morphology. Energy-dispersive X-ray analysis confirmed the elemental stoichiometry and existence of silver and gold nanoparticles in films. Samples exhibited significant gain in photoelectrochemical water splitting current, which is largely attributable to the facilitative role played by silver/gold nano-isles in the separation and transport of photogenerated charge-carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  2. Wolcott A, Smith WA, Kuykendall TR, Zhao Y, Zhang JZ (2009) Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting. Adv Funct Mater 19:1849–1856

    Article  CAS  Google Scholar 

  3. Harriman A (2013) Prospects for conversion of solar energy into chemical fuels: the concept of a solar fuels industry. R Soc. doi:10.1098/rsta.2011.0415

    Google Scholar 

  4. Choudhary S, Upadhyay S, Kumar P, Singh N, Satsangi VR, Shrivastav R, Dass S (2012) Nanostructured bilayered thin films in photoelectrochemical water splitting—a review. Int J Hydrogen Energy 37(24):18713–18730. doi:10.1016/j.ijhydene.2012.10.028

    Article  CAS  Google Scholar 

  5. Alexander BD, Kulesza PJ, Rutkowska I, Solarska R, Augustynski J (2008) Metal oxide photoanodes for solar hydrogen production. J Mater Chem 18:2298–2303

    Article  CAS  Google Scholar 

  6. Kudo A (2003) Photocatalyst materials for water splitting. Catal Surv Asia 7(1):31–38

    Article  CAS  Google Scholar 

  7. Toledano R, Mandler D (2010) Electrochemical codeposition of thin gold nanoparticles/sol–gel nanocomposite films. Chem Mater 22:3943–3951

    Article  CAS  Google Scholar 

  8. Falaras P, Arabatzis IM, Stergiopoulos T, Bernard MC (2003) Enhanced activity of silver modified thin-film TiO2 photocatalysts. Int J Photoenergy 5:123–130

    Article  CAS  Google Scholar 

  9. Song LY, Fei LH, Liang XX, Gang GM, Ling L, Zhou Y (2011) Localized surface plasmons enhanced ultraviolet emission of ZnO films. Chin Phys Lett 28(5):057803–057809

    Article  Google Scholar 

  10. Chaturvedi S, Rodriguez J, Jirsak T, Hrbek J (1998) Ag ‘‘promoted’’ sulfidation of metal and oxide surfaces: a photoemission study of the interaction of sulfur with Ag/Rh(111) and Ag/ZnO. Surf Sci 412:273–286

    Article  Google Scholar 

  11. Subramanian V, Wolf E, Kamat PV (2001) Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films. J Phys Chem B 105:11439–11446

    Article  CAS  Google Scholar 

  12. Chen IC, Liou YCM, Yang J, Shieh TY (2011) Preparation of silver nanoparticles on zinc oxide nanowires by photocatalytic reduction for use in surface-enhanced Raman scattering measurements. J Raman Spectrosc 42:339–344

    Article  CAS  Google Scholar 

  13. Chauhana R, Kumar A, Chaudhary RP (2010) Synthesis and characterization of silver doped ZnO nanoparticles. Arch Appl Sci Res 2(5):378–385

    Google Scholar 

  14. Tang S, Tang Y, Gao F, Liu Z, Meng X (2007) Ultrasonic electrodeposition of silver nanoparticles on dielectric silica spheres. Nanotechnology 18(29):295607

    Article  Google Scholar 

  15. Welch CM, Compton RG (2006) The use of nanoparticles in electroanalysis: a review. Anal Bioanal Chem 384:601–619

    Article  CAS  Google Scholar 

  16. Fan D, Zhang R, Wang X, Huang S, Peng H (2011) Influence of silver dopant on the morphology and ultraviolet emission in aligned ZnO nanostructured. Phys Status Solidi 209:1–5

  17. Kamat PV (2008) Quantum dot solar cells semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753

    Article  CAS  Google Scholar 

  18. Wang Q, Zheng J (2010) Electrodeposition of silver nanoparticles on a zinc oxide film: improvement of amperometric sensing sensitivity and stability for hydrogen peroxide determination. Microchim Acta 169:361–365

    Article  CAS  Google Scholar 

  19. Hu Y, Liu JS, Liu TC (2013) Structural characterization and electrical property of the manganese oxides/silver nanocomposite thin films. Int J Chem Eng Appl 4:58–61

    CAS  Google Scholar 

  20. Etesami M, Mohamed N (2011) Catalytic application of gold nanoparticles electrodeposited by fast scan cyclic voltammetry to glycerol electrooxidation in alkaline electrolyte. Int J Electrochem Sci 6:4676–4689

    CAS  Google Scholar 

  21. Takahashia Y, Tatsuma T (2010) Electrodeposition of thermally stable gold and silver nanoparticle ensembles through a thin alumina nanomask. Nanoscale 2:1494–1499

    Article  Google Scholar 

  22. Safavi A, Maleki N, Farjami E (2009) Electrodeposited silver nanoparticles on carbon ionic liquid electrode for electrocatalytic sensing of hydrogen peroxide. Electroanalysis 21(13):1533–1538

    Article  CAS  Google Scholar 

  23. Yin B, Ma H, Wang S, Chen S (2003) Electrochemical synthesis of silver nanoparticles under protection of poly(N-vinylpyrrolidone). J Phys Chem B 107:8898–8904

    Article  CAS  Google Scholar 

  24. Singh N, Kumari B, Sharma S, Chaudhary S, Upadhyay S, Satsangi VR, Dass S, Shrivastav R (2012) Electrodeposition and sol–gel derived nanocrystalline N–ZnO thin films for photoelectrochemical splitting of water: exploring the role of microstructure. Renew Energy 69:242–252

    Article  Google Scholar 

  25. Singh N, Choudhary S, Upadhyay S, Satsangi VR, Dass S, Shrivastav R (2014) Nanocrystalline Zn1−xAgxOy thin films evolved through electrodeposition for photoelectrochemical splitting of water. J Solid State Electrochem 18:523–533

    Article  CAS  Google Scholar 

  26. Sharma V, Kumar P, Shrivastava J, Solanki A, Satsangi VR, Dass S, Shrivastav R (2011) Vertically aligned nanocrystalline Cu–ZnO thin films for photoelectrochemical splitting of water. J Mater Sci 46:3792–3801

    Article  CAS  Google Scholar 

  27. Sharma V, Kumar P, Singh N, Upadhyay S, Satsangi VR, Dass S, Shrivastav R (2012) Photoelectrochemical water splitting with nanocrystalline Zn1−xRuxO thin films. Int J Hydrogen Energy 37:12138–12149

    Article  CAS  Google Scholar 

  28. Sharma V, Kumar P, Shrivastava J, Solanki A, Satsangi VR, Dass S, Shrivastav R (2011) Synthesis and characterization of nanocrystalline Zn1−xMxO (M = Ni, Cr) thin films for efficient photoelectrochemical splitting of water under UV irradiation. Int J Hydrogen Energy 36:4280–4290

    Article  CAS  Google Scholar 

  29. Gupta M, Shrivastava J, Sharma V, Solanki A, Singh AP, Satsangi VR, Dass S, Shrivastav R (2009) Enhanced photoelectrochemical activity of 120 MeV Ag9+ irradiated nanostructured thin films of ZnO for solar-hydrogen generation via splitting of water. Adv Mater Res 67:95–102

    Article  CAS  Google Scholar 

  30. Zhao N, Shi F, Wang Z, Zhang X (2005) Combining layer-by-layer assembly with electrodeposition of silver aggregates for fabricating superhydrophobic surfaces. Langmuir 21:4713–4716

    Article  CAS  Google Scholar 

  31. Njagi J, Warner J, Andreescu S (2007) A bioanalytical chemistry experiment for undergraduate students: biosensors based on metal, nanoparticles. J Chem Educ 84(7):1180–1182

    Article  CAS  Google Scholar 

  32. Chaudhary YS, Khan SA, Shrivastav R, Satsangi VR, Prakash S, Avasthi DK, Dass S (2004) A study on 170 MeV Au13+ irradiation induced modifications in structural and photoelectrochemical behavior of nanostructured CuO thin films. Nucl Instrum Methods Phys Res Sect B 225:291–296

    Article  CAS  Google Scholar 

  33. Kathirvel P, Manoharan D, Mohan SM, Kumar S (2009) Spectral investigations of chemical bath deposited zinc oxide thin films—ammonia gas sensor. J Optoelectron Biomed Mater 1:25–33

    Google Scholar 

  34. Ray SC (2001) Preparation of copper oxide thin film by the sol–gel like dip technique and study of their structural and optical properties. Sol Energy Mater Sol Cells 68:307–312

    Article  CAS  Google Scholar 

  35. Li Y, Yu H, Zhang C, Fu L, Li G, Shao Z, Yi B (2013) Enhancement of photoelectrochemical response by Au modified in TiO2 Nanorods. Int J Hydrogen Energy 38:13023–13030

    Article  CAS  Google Scholar 

  36. Subramanian V, Wolf EE, Kamat PV (2004) Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermi level equilibration. J Am Chem Soc 126:4943–4950

    Article  CAS  Google Scholar 

  37. Chandrasekharan N, Kamat PV (2000) Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles. J Phys Chem B 104:10851–10857

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial assistance from DAE-BRNS, Govt. of India (Project no. 2013/37C/21/BRNS/957) is gratefully acknowledged. Authors thank Prof. Soami P Satsangi and Mr. Sachin Saxena, USIC, DEI for assistance in electrodeposition of Ag/Au nano-isles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Shrivastav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, B., Sharma, S., Satsangi, V.R. et al. Surface deposition of Ag and Au nano-isles on ZnO thin films yields enhanced photoelectrochemical splitting of water. J Appl Electrochem 45, 299–312 (2015). https://doi.org/10.1007/s10800-015-0790-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0790-7

Keywords

Navigation