Skip to main content
Log in

Symmetric bilinear forms over finite fields with applications to coding theory

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

Let \(q\) be an odd prime power and let \(X(m,q)\) be the set of symmetric bilinear forms on an \(m\)-dimensional vector space over \(\mathbb {F}_q\). The partition of \(X(m,q)\) induced by the action of the general linear group gives rise to a commutative translation association scheme. We give explicit expressions for the eigenvalues of this scheme in terms of linear combinations of generalized Krawtchouk polynomials. We then study \(d\)-codes in this scheme, namely subsets \(Y\) of \(X(m,q)\) with the property that, for all distinct \(A,B\in Y\), the rank of \(A-B\) is at least \(d\). We prove bounds on the size of a \(d\)-code and show that, under certain conditions, the inner distribution of a \(d\)-code is determined by its parameters. Constructions of \(d\)-codes are given, which are optimal among the \(d\)-codes that are subgroups of \(X(m,q)\). Finally, with every subset \(Y\) of \(X(m,q)\), we associate two classical codes over \(\mathbb {F}_q\) and show that their Hamming distance enumerators can be expressed in terms of the inner distribution of \(Y\). As an example, we obtain the distance enumerators of certain cyclic codes, for which many special cases have been previously obtained using long ad hoc calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. When \(q\) is a power of two, a symmetric association scheme with \(m+\lfloor m/2\rfloor \) classes arises in the same way [35]. Except if \((m,q)=(2,2)\), this association scheme is not formally self-dual [36].

  2. The evaluation depends on the choice of \(\chi \) and so does (2.4). According to Theorem 2.2, different choices for \(\chi \) can swap the roles of \(Q_{2r+1,+1}(2s+1,\tau )\) and \(Q_{2r+1,-1}(2s+1,\tau )\) and so can change the order of the idempotent basis for the Bose–Mesner algebra.

  3. Since \(Q_{2t+2,\epsilon }(i,\tau )\) is independent of the choice of the character \(\chi \) by Theorem 2.2, in view of (3.1), a \((2t+1,\epsilon )\)-design is well defined.

  4. It should be noted that [29], Theorem 3.4] and [7], Theorem 6.8] were proved only for symmetric association schemes, but the proof of [29], Theorem 3.4] is easily adapted to work for commutative association schemes.

  5. The constructions in [30] have been given for finite fields of even characteristic, but as noted in [30], Section 5], they still work for finite fields of odd characteristic.

References

  1. Andrews, G.E.: The Theory of Partitions. Addison-Wesley Publishing Co., Reading (1976)

    MATH  Google Scholar 

  2. Bracken, C., Byrne, E., Markin, N., McGuire, G.: Determining the nonlinearity of a new family of APN functions. In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, volume 4851 of Lecture Notes in Comput. Sci., pp 72–79. Springer, Berlin (2007)

  3. Carlitz, L.: Representations by quadratic forms in a finite field. Duke Math. J. 21, 123–137 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  4. Delsarte, Ph.: An algebraic approach to the association schemes of coding theory. Philips Res. Rep. Suppl. 10 (1973)

  5. Delsarte, Ph.: Association schemes and \(t\)-designs in regular semilattices. J. Comb. Theory Ser. A 20(2), 230–243 (1976)

  6. Delsarte, Ph.: Properties and applications of the recurrence \(F(i+1, k+1, n+1)=q^{k+1}F(i, k+1,\,n)-q^{k}F(i,\,k,\,n)\). SIAM J. Appl. Math. 31(2), 262–270 (1976)

  7. Delsarte, Ph.: Pairs of vectors in the space of an association scheme. Philips Res. Rep. 32(5–6), 373–411 (1977)

  8. Delsarte, Ph.: Bilinear forms over a finite field, with applications to coding theory. J. Comb. Theory Ser. A 25(3), 226–241 (1978)

  9. Delsarte, Ph.: Hahn polynomials, discrete harmonics, and \(t\)-designs. SIAM J. Appl. Math. 34(1), 157–166 (1978)

  10. Delsarte, Ph., Goethals, J.M.: Alternating bilinear forms over \({\rm GF}(q)\). J. Comb. Theory Ser. A 19(1), 26–50 (1975)

  11. Delsarte, Ph., Goethals, J.M., MacWilliams, F.J.: On generalized Reed-Muller codes and their relatives. Inform. Contr. 16, 403–442 (1970)

  12. Delsarte, Ph., Levenshtein, V.I.: Association schemes and coding theory. IEEE Trans. Inform. Theory 44(6), 2477–2504 (1998)

  13. Dumas, J.-G., Gow, R., Sheekey, J.: Rank properties of subspaces of symmetric and Hermitian matrices over finite fields. Finite Fields Appl. 17(6), 504–520 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feng, K., Luo, J.: Weight distribution of some reducible cyclic codes. Finite Fields Appl. 14(2), 390–409 (2008)

    Article  MathSciNet  Google Scholar 

  15. Huo, Y.J., Wan, Z.X.: Nonsymmetric association schemes of symmetric matrices. Acta Math. Appl. Sinica (English Ser.) 9(3), 236–255 (1993)

    Article  MathSciNet  Google Scholar 

  16. Kumar, P.V., Moreno, O.: Prime-phase sequences with periodic correlation properties better than binary sequences. IEEE Trans. Inform. Theory 37(3), 603–616 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, S., Hu, S., Feng, T., Ge, G.: The weight distribution of a class of cyclic codes related to Hermitian forms graphs. IEEE Trans. Inform. Theory 59(5), 3064–3067 (2013)

    Article  MathSciNet  Google Scholar 

  18. Lidl, R., Niederreiter, H.: Finite fields, Volume 20 of Encyclopedia of Mathematics and its Applications, 2nd edn. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  19. Liu, X., Luo, Y.: The weight distributions of a class of cyclic codes with three nonzeros over \(\mathbb{F}_3\). J. Appl. Math. Article ID 686138, 11 (2014)

  20. Liu, X., Luo, Y.: The weight distributions of some cyclic codes with three or four nonzeros over \(\mathbb{F}_3\). Des. Codes Cryptogr. 73(3), 747–768 (2014)

    Article  MathSciNet  Google Scholar 

  21. Liu, Y., Yan, H.: A class of five-weight cyclic codes and their weight distribution (2013). arXiv:1312.4638v2 [cs.IT]

  22. Liu, Y., Yan, H., Liu, Ch.: A class of reducible cyclic codes and their weight distribution (2014). arXiv:1404.0969v2 [cs.IT]

  23. Luo, J., Feng, K.: Cyclic codes and sequences from generalized Coulter–Matthews function. IEEE Trans. Inform. Theory 54(12), 5345–5353 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Luo, J., Feng, K.: On the weight distributions of two classes of cyclic codes. IEEE Trans. Inform. Theory 54(12), 5332–5344 (2008)

    Article  MathSciNet  Google Scholar 

  25. Luo, J., Tang, Y., Wang, H.: Cyclic codes and sequences: the generalized Kasami case. IEEE Trans. Inform. Theory 56(5), 2130–2142 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North Holland, Amsterdam (1977)

  27. Martin, W.J., Tanaka, H.: Commutative association schemes. Eur. J. Comb. 30(6), 1497–1525 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Munemasa, A.: An analogue of \(t\)-designs in the association schemes of alternating bilinear forms. Graphs Comb. 2(3), 259–267 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Roos, C.: On antidesigns and designs in an association scheme. Delft Progr. Rep. 7(2), 98–109 (1982)

    MathSciNet  MATH  Google Scholar 

  30. Schmidt, K.-U.: Symmetric bilinear forms over finite fields of even characteristic. J. Comb. Theory Ser. A 117(8), 1011–1026 (2010)

    Article  MATH  Google Scholar 

  31. Stanton, D.: A partially ordered set and \(q\)-Krawtchouk polynomials. J. Comb. Theory Ser. A 30(3), 276–284 (1981)

    Article  MATH  Google Scholar 

  32. Stanton, D.: \(t\)-designs in classical association schemes. Graphs Comb. 2(3), 283–286 (1986)

    Article  MATH  Google Scholar 

  33. van Lint, J.H., Wilson, R.M.: A Course in Combinatorics, 2nd edn. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  34. Wan, Z.-X.: Lectures on Finite Fields and Galois Rings. World Scientific Publishing Co., Inc, River Edge (2003)

    Book  MATH  Google Scholar 

  35. Wang, Y., Ma, J.: Association schemes of symmetric matrices over a finite field of characteristic two. J. Stat. Plann. Inference 51(3), 351–371 (1996)

    Article  MATH  Google Scholar 

  36. Wang, Y., Wang, C., Ma, C., Ma, J.: Association schemes of quadratic forms and symmetric bilinear forms. J. Algebr. Comb. 17(2), 149–161 (2003)

    Article  MATH  Google Scholar 

  37. Zeng, X., Hu, L., Jiang, W., Yue, Q., Cao, X.: The weight distribution of a class of \(p\)-ary cyclic codes. Finite Fields Appl. 16(1), 56–73 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zheng, D., Wang, X., Zeng, X., Hu, L.: The weight distribution of a family of \(p\)-ary cyclic codes. Des. Codes Cryptogr. 75(2), 263–275 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhou, Z., Ding, C., Luo, J., Zhang, A.: A family of five-weight cyclic codes and their weight enumerators. IEEE Trans. Inform. Theory 59(10), 6674–6682 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

I would like to thank Rod Gow and Tor Helleseth for fruitful discussions, which inspired some of the results in this paper. In particular, Rod Gow proved independently with a different technique that Theorem 3.3 holds for \(d=m-1\) and \(d=m-2\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Uwe Schmidt.

Appendix: computation of the \(Q\)-numbers

Appendix: computation of the \(Q\)-numbers

We shall now prove Theorem 2.2. We write \(Q^{(m)}_{k,\epsilon }(i,\tau )\) for \(Q_{k,\epsilon }(i,\tau )\) to indicate dependence on \(m\). It will also be convenient to write

$$\begin{aligned} Q^{(m)}_{0,-1}(i,\tau )=0. \end{aligned}$$
(6.1)

We begin with the following recurrence for the \(Q\)-numbers.

Lemma 6.1

For \(k,i\ge 1\), we have

$$\begin{aligned}&Q^{(m)}_{k,\epsilon }(i,\tau )=Q^{(m)}_{k,\epsilon }(i-1,1)\\&\quad -\tfrac{1}{2}q^{m-i}\gamma _q^{i-1} \Big [Q^{(m-1)}_{k-1,\epsilon }(i-1,1)(q-\tau \,\gamma _q)-(-1)^iQ^{(m-1)}_{k-1,-\epsilon }(i-1,1)(q+\tau \,\gamma _q)\Big ]. \end{aligned}$$

Proof

Let \(X^{(m)}_{i,\tau }\) be the set of \(m\times m\) symmetric matrices of rank \(i\) and type \(\tau \). Fix \(i\in \{1,\ldots ,m\}\) and \(\tau \in \{-1,1\}\). Let \(S\) be an \(m\times m\) diagonal matrix of rank \(i\) with diagonal \([z,1,\ldots ,1,0,\ldots ,0]\) such that \(\eta (z)=\tau \), and let \(S'\) be the \((m-1)\times (m-1)\) diagonal matrix of rank \(i-1\) with diagonal \([1,\ldots ,1,0,\ldots ,0]\). From (2.7) and (2.6) we have

$$\begin{aligned} Q^{(m)}_{k,\epsilon }(i-1,1)-Q^{(m)}_{k,\epsilon }(i,\tau )&=\sum _{A\in X^{(m)}_{k,\epsilon }}\big (\langle B,S'\rangle -\langle A,S\rangle \big ) \end{aligned}$$
(6.2)
$$\begin{aligned}&=\sum _{A\in X^{(m)}_{k,\epsilon }}\langle B,S'\rangle \big (1-\chi (za)\big ), \end{aligned}$$
(6.3)

where we write \(A\) as

$$\begin{aligned} A=\begin{bmatrix} a&\quad v^T\\ v&\quad B \end{bmatrix} \end{aligned}$$
(6.4)

for some \(a\in \mathbb {F}_q\), some \(v\in \mathbb {F}_q^{m-1}\), and some \((m-1)\times (m-1)\) symmetric matrix \(B\) over \(\mathbb {F}_q\). The summand in (6.3) is zero for \(a=0\), so assume that \(a\) is nonzero. Writing

$$\begin{aligned} L=\begin{bmatrix} 1&\quad -a^{-1}v^T\\ 0&\quad I \end{bmatrix}, \end{aligned}$$

we have

$$\begin{aligned} L^TAL=\begin{bmatrix} a&\quad 0\\ 0&\quad C \end{bmatrix},\quad \text {where}\quad C=B-a^{-1}vv^T. \end{aligned}$$

Note that \(L\) is nonsingular. Let \(\mathcal {Q}\) and \(\mathcal {N}\) be the set of squares and nonsquares of \(\mathbb {F}_q^*\), respectively. As \((a,C)\) ranges over

$$\begin{aligned} \mathcal {Q} \times X^{(m-1)}_{k-1,\epsilon } \;\; \cup \;\; \mathcal {N}\times X^{(m-1)}_{k-1,-\epsilon } \end{aligned}$$

and \(v\) ranges over \(\mathbb {F}_q^{m-1}\), the matrix \(A\), given in (6.4), ranges over all elements of \(X^{(m)}_{k,\epsilon }\), except for those matrices (6.4) satisfying \(a=0\). Hence, using (2.5), the sum (6.3) becomes

$$\begin{aligned} \begin{aligned}&\sum _{a\in \mathcal {Q}}\big (1-\chi (za)\big )\sum _{C\in X^{(m-1)}_{k-1,\epsilon }}\langle C,S'\rangle \sum _{v\in \mathbb {F}_q^{m-1}}\langle a^{-1}vv^T,S'\rangle \\&\qquad +\sum _{a\in \mathcal {N}}\big (1-\chi (za)\big )\sum _{C\in X^{(m-1)}_{k-1,-\epsilon }}\langle C,S'\rangle \sum _{v\in \mathbb {F}_q^{m-1}}\langle a^{-1}vv^T,S'\rangle . \end{aligned} \end{aligned}$$
(6.5)

From (2.7) and (2.6), we have

$$\begin{aligned} \sum _{C\in X^{(m-1)}_{k-1,\epsilon }}\langle C,S'\rangle =Q^{(m-1)}_{k-1,\epsilon }(i-1,1). \end{aligned}$$
(6.6)

Furthermore,

$$\begin{aligned} \sum _{v\in \mathbb {F}_q^{m-1}}\langle a^{-1}vv^T,S'\rangle&=q^{m-i}\sum _{v_1,\ldots ,v_{i-1}\in \mathbb {F}_q}\chi (a^{-1}(v_1^2+\cdots +v_{i-1}^2)) \nonumber \\&=q^{m-i}\Bigg (\sum _{v\in \mathbb {F}_q}\chi (a^{-1}v^2)\Bigg )^{i-1}. \end{aligned}$$
(6.7)

Putting \(\eta (0)=0\), the summation becomes

$$\begin{aligned} \sum _{v\in \mathbb {F}_q}\chi (a^{-1}v^2)&=\sum _{y\in \mathbb {F}_q}(1+\eta (y))\chi (a^{-1}y)\\&=\sum _{y\in \mathbb {F}_q}(1+\eta (ay))\chi (y)\\&=\eta (a)\,\gamma _q, \end{aligned}$$

using \(\sum _{y\in \mathbb {F}_q}\chi (y)=0\) and the definition (2.9) of the Gauss sum \(\gamma _q\). Substitute into (6.7) and then (6.7) and (6.6) into (6.5) to deduce that (6.2) equals

$$\begin{aligned}&q^{m-i}\gamma _q^{i-1}\Big [Q^{(m-1)}_{k-1,\epsilon }(i-1,1)\sum _{a\in \mathcal {Q}}\big (1-\chi (za)\big )\\&\qquad \qquad -(-1)^iQ^{(m-1)}_{k-1,-\epsilon }(i-1,1)\sum _{a\in \mathcal {N}}\big (1-\chi (za)\big )\Big ]. \end{aligned}$$

To complete the proof, recall that \(|\mathcal {Q}|=|\mathcal {N}|=(q-1)/2\) and observe that

$$\begin{aligned} \sum _{a\in \mathcal {Q}}\big (1-\chi (za)\big )&=\frac{q-1}{2}-\sum _{a\in \mathbb {F}_q^*}\frac{1+\eta (a)}{2}\chi (za)\\&=\frac{q}{2}-\frac{1}{2}\sum _{a\in \mathbb {F}_q^*}\eta (a)\chi (za)\\&=\frac{q}{2}-\frac{1}{2}\eta (z)\,\gamma _q \end{aligned}$$

and similarly

$$\begin{aligned} \sum _{a\in \mathcal {N}}\big (1-\chi (za)\big )&=\frac{q}{2}+\frac{1}{2}\eta (z)\,\gamma _q, \end{aligned}$$

as required. \(\square \)

The \(Q\)-numbers of \(X(m,q)\) are determined by the recurrence of Lemma 6.1 together with the initial numbers \(Q^{(m)}_{k,\epsilon }(0,1)\) and \(Q^{(m)}_{0,1}(i,\tau )\). From (2.7) and (2.6), we find that these initial numbers satisfy

$$\begin{aligned} Q^{(m)}_{0,1}(i,\tau )&=1, \end{aligned}$$
(6.8)
$$\begin{aligned} Q^{(m)}_{k,\epsilon }(0,1)&=v^{(m)}(k,\epsilon ), \end{aligned}$$
(6.9)

where we write \(v^{(m)}(i,\tau )\) for \(v(i,\tau )\), the number of \(m\times m\) symmetric matrices over \(\mathbb {F}_q\) of rank \(i\) and type \(\tau \).

In order to solve the recurrence in Lemma 6.1, we shall first obtain explicit expressions for the numbers

$$\begin{aligned} S^{(m)}_k(i,\tau )&=Q^{(m)}_{k,1}(i,\tau )+Q^{(m)}_{k,-1}(i,\tau ), \end{aligned}$$
(6.10)
$$\begin{aligned} R^{(m)}_k(i,\tau )&=Q^{(m)}_{k,1}(i,\tau )-Q^{(m)}_{k,-1}(i,\tau ) \end{aligned}$$
(6.11)

in the following two lemmas. Since

$$\begin{aligned} 2Q^{(m)}_{k,\epsilon }(i,\tau )=S^{(m)}_k(i,\tau )+\epsilon \,R^{(m)}_{k}(i,\tau ) \end{aligned}$$

we then directly obtain Theorem 2.2. We shall repeatedly use the following elementary identity for the Gauss sum \(\gamma _q\), defined in (2.9),

$$\begin{aligned} \gamma _q^2=\eta (-1)q \end{aligned}$$
(6.12)

(see [18], Theorem 5.12], for example).

Lemma 6.2

For \(k,i\ge 1\), the numbers \(S^{(m)}_k(i,\tau )\) are given by

$$\begin{aligned} S^{(m)}_{2r+1}(2s+1,\tau )&=-q^{2r}F^{(m-1)}_r(s), \end{aligned}$$
(6.13)
$$\begin{aligned} S^{(m)}_{2r}(2s+1,\tau )&=q^{2r}F^{(m-1)}_r(s), \end{aligned}$$
(6.14)
$$\begin{aligned} S^{(m)}_{2r+1}(2s,\tau )&=-q^{2r}F^{(m-1)}_r(s-1)+\tau \,\eta (-1)^sq^{m-s+2r}F^{(m-2)}_r(s-1), \end{aligned}$$
(6.15)
$$\begin{aligned} S^{(m)}_{2r}(2s,\tau )&=q^{2r}F^{(m-1)}_r(s-1)-\tau \,\eta (-1)^sq^{m-s+2r-2}F^{(m-2)}_{r-1}(s-1). \end{aligned}$$
(6.16)

Proof

Write \(s=\lfloor i/2\rfloor \) and

$$\begin{aligned} n=\lfloor (m-1)/2\rfloor \quad \text {and}\quad c=q^{(m-1)(m-2)/(2n)}. \end{aligned}$$

From Lemma 6.1 we find that

$$\begin{aligned} S^{(m)}_k(i,\tau )=S^{(m)}_k(i-1,1)-(-\tau )^{i+1}\,q^{m-2s}\gamma _q^{2s}\,S^{(m-1)}_{k-1}(i-1,1). \end{aligned}$$
(6.17)

Hence, by (6.9) and (6.10),

$$\begin{aligned} S_k^{(m)}(1,\tau )=v^{(m)}(k,1)+v^{(m)}(k,-1)-q^m\big [v^{(m-1)}(k-1,1)+v^{(m-1)}(k-1,-1)\big ]. \end{aligned}$$

From Proposition 2.1, we then find that

$$\begin{aligned} S^{(m)}_{2r}(1,\tau )=-S^{(m)}_{2r+1}(1,\tau )=\frac{1}{q^r}\,\frac{(q^m-q)(q^{m}-q^2)\cdots (q^m-q^{2r})}{(q^{2r}-1)(q^{2r}-q^2)\cdots (q^{2r}-q^{2r-2})}, \end{aligned}$$

which we can write as

Apply the identities (2.11) and (2.10) to \(F^{(m-1)}_r(0)\) to see that (6.13) and (6.14) hold for \(s=0\). Moreover, it is easy to see from (6.1) and (6.8) that (6.14) also holds for \(r=0\). Now substitute the recurrence (6.17) into itself and use (6.12) to obtain

$$\begin{aligned} S^{(m)}_k(2s+1,\tau )=S^{(m)}_k(2s-1,1)-cq^{2(n-s+1)}\,S^{(m-2)}_{k-2}(2s-1,1). \end{aligned}$$

Using (2.12), we readily verify by induction that (6.13) and (6.14) hold for all \(r,s\ge 0\). The identities (6.15) and (6.16) then follow from (6.17) and (6.12). \(\square \)

Lemma 6.3

For \(k,i\ge 1\), the numbers \(R^{(m)}_k(i,\tau )\) are given by

$$\begin{aligned} R^{(m)}_{2r+1}(2s+1,\tau )&=\tau \,\eta (-1)^{r+s}\, q^{m-s+r-1}\,\gamma _q\,F^{(m-1)}_r(s), \end{aligned}$$
(6.18)
$$\begin{aligned} R^{(m)}_{2r}(2s+1,\tau )&=\eta (-1)^rq^rF^{(m)}_r(s), \end{aligned}$$
(6.19)
$$\begin{aligned} R^{(m)}_{2r+1}(2s,\tau )&=0, \end{aligned}$$
(6.20)
$$\begin{aligned} R^{(m)}_{2r}(2s,\tau )&=\eta (-1)^rq^rF^{(m)}_r(s). \end{aligned}$$
(6.21)

Proof

Write

$$\begin{aligned} n=\lfloor m/2\rfloor \quad \text {and}\quad c=q^{m(m-1)/(2n)}. \end{aligned}$$

From (6.9) and (6.11), we have

$$\begin{aligned} R^{(m)}_k(0,1)=v^{(m)}(k,1)-v^{(m)}(k,-1). \end{aligned}$$

From Proposition 2.1, we then find that

$$\begin{aligned} R^{(m)}_{2r+1}(0,1)=0 \end{aligned}$$

and

as in the proof of Lemma 6.2. Hence (6.20) and (6.21) hold for \(s=0\). Moreover (6.21) trivially holds for \(r=0\). Writing \(s=\lfloor (i+1)/2\rfloor \), we find from Lemma 6.1 that

$$\begin{aligned} R^{(m)}_k(i,\tau )=R^{(m)}_k(i-1,1)-(-\tau )^i\,q^{m-2s+1}\gamma _q^{2s-1}\,R^{(m-1)}_{k-1}(i-1,1), \end{aligned}$$
(6.22)

which, after self-substitution, gives

$$\begin{aligned} R^{(m)}_k(2s,\delta )=R^{(m)}_k(2s-2,1)-\eta (-1)\,qc\,q^{2(n-s)}\,R^{(m-2)}_{k-2}(2s-2,1), \end{aligned}$$

using (6.12). With this recurrence, (6.20) immediately follows and (6.21) can be verified by induction, as in the proof of Lemma 6.2. The identities (6.18) and (6.19) then follow from (6.22) and (6.12). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, KU. Symmetric bilinear forms over finite fields with applications to coding theory. J Algebr Comb 42, 635–670 (2015). https://doi.org/10.1007/s10801-015-0595-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-015-0595-0

Keywords

Mathematics Subject Classification

Navigation