Skip to main content
Log in

Toxic effects of antimony on photosystem II of Synechocystis sp. as probed by in vivo chlorophyll fluorescence

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

It has been demonstrated that antimony (Sb) at concentrations ranging from 1.0 to 10.0 mg L−1 inhibits O2 evolution. Deeper insight into the influence of Sb on PSII was obtained with measurements of in vivo chlorophyll fluorescence. The donor and the acceptor sides of PSII were shown to be the target of Sb. Sb treatment induces inhibition of electron transport from Q A to QB/Q B and accumulation of P +680 . S2(QAQB) charge recombination and oxidation by PQ9 molecules became more important in Q A reoxidation as the electron transfer in PSII was inhibited. Sb exposure caused a steady increase in the proportion of PSIIX and PSIIβ. These changes resulted in increased fluxes of dissipated energy and decreased index of photosynthesis performance, of maximum quantum yield, and of the overall photosynthetic driving force of PSII.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Appenroth KJ, Stockel J, Srivastava A, Strasser RJ (2001) Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environ Poll 115:49–64

    Article  CAS  Google Scholar 

  • Baron M, Arellano JB, Gorge LJ (1995) Copper and photosystem II: a controversial relationship. Physiol Plant 94:174–180

    Article  CAS  Google Scholar 

  • Bukhov NG, Carpentier R (2000) Heterogeneity of photosystem II reaction centres as influenced by heat treatment of barley leaves. Physiol Plant 110:279–285

    Article  CAS  Google Scholar 

  • Bustamante J, Lennart D, Marie V, Bruce F, Sten O (1997) The semiconductor elements arsenic and indium induce apoptosis in rat thymocytes. Toxicology 118:129–136

    Article  CAS  PubMed  Google Scholar 

  • Chylla RA, Whitmarsh J (1989) Inactive photosystem II complexes in leaves. Turnover rate and quantitation. Plant Physiol 90:765–772

    Article  CAS  PubMed  Google Scholar 

  • Council of the European Communities (1976) Council Directive 76/464/EEC of 4 May 1976 on pollution caused by certain dangerous substances discharged into the aquatic environment of the Community. Official Journal L 129, 18 May 1976, pp. 23–29.

    Google Scholar 

  • Dau H (1994) Molecular mechanisms and quantitative models of variable photosystem II fluorescence. Photochem Photobiol 60:1–23

    Article  CAS  Google Scholar 

  • Fernades JC, Henriques FS (1991) Biochemical, physiological and structural effects of excess copper in plants. Bot Rev 57:246–273

    Article  Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 34:1073–1079

    Google Scholar 

  • Guenther JE, Melis A (1990) The physiological significance of photosystem II heterogeneity in chloroplasts. Photosynth Res 23:105–109

    Article  CAS  Google Scholar 

  • Hammel W, Debus R, Steubing L (2000) Mobility of antimony in soil and its availability to plants. Chemosphere 41:1791–1798

    Article  CAS  PubMed  Google Scholar 

  • Han T, Kang S-H, Park J-S, Lee H-K, Brown MT (2007) Physiological responses of Ulva pertusa and U. armoricana to copper exposure. Aquat Toxicol. doi:10.1016/j.aquatox.2007.10.016

    PubMed  Google Scholar 

  • He MC, Yang JR (1999) Effects of different forms of antimony on rice during the period of germination and growth and antimony concentration in rice tissue. Sci Total Environ 243–244:149–155

    Google Scholar 

  • He MC, Ji HB, Zhao CY, Xie J, Wu XM, Li ZF (2002) Preliminary studies of heavy metal pollution in soil and plant near antimony mine area. J Beijing Normal University (Nat Sci) 38:417–420

    CAS  Google Scholar 

  • Hinkley TK, Lamothe PJ, Wilson SA, David L, Finnegan TM, Gerlach TM (1999) Metal emissions from Kilauea, and a suggested revision of the estimated worldwide metal output by quiescent degassing of volcanoes. Earth Planet Sci Lett 170:315–325

    Article  CAS  Google Scholar 

  • Horton P, Bowyer TR (1990) Chlorophyll fluorescence transients. In: Harwood JL, Bowyer TR (eds) Methods in plant biochemistry. Lipids, membranes and aspects of photobiology. Academic, San Diego, pp 259–295

    Google Scholar 

  • Huang H, Shu SC, Shih JH, Kuo CJ, Chiu ID (1998) Antimony trichloride induces DNA damage and apoptosis in mammalian cells. Toxicology 129:113–123

    Article  CAS  PubMed  Google Scholar 

  • Joliot A, Joliot P (1964) Etude cine tique de la reaction photochimique liberant loxygene au cours de la photosynthese. C R Acad Sci 258:4622–4625

    CAS  Google Scholar 

  • Kaftan D, Meszaros T, Whitmarsh J, Nedbal L (1999) Characterization of photosystem II activity and heterogeneity during the cell cycle of the green alga Scenedesmus quadricauda. Plant Physiol 120:433–441

    Article  CAS  PubMed  Google Scholar 

  • Lavergne J, Leci E (1993) Properties of inactive photosystem II centers. Photosynth Res 35:323–343

    Article  CAS  Google Scholar 

  • Maksymiec W (1997) Effect of copper on cellular processes in higher plants. Photosynthetica 34:321–342

    Article  CAS  Google Scholar 

  • Melis A (1991) Dynamics of photosynthetic membrane composition and function. Biochim Biophys Acta 1058:87–106

    Article  CAS  Google Scholar 

  • Melis A, Homann PH (1976) Heterogeneity of the photochemical centers in system II of chloroplasts. Photochem Photobiol 23:343–350

    Article  CAS  PubMed  Google Scholar 

  • Muller P, Xiao-Ping L, Niyogi KK (2001) Non-photochemical quenching: a response to excess light energy. Plant Physiol 125:1158–1566

    Google Scholar 

  • Nedbal L, Trtílek M, Kaftan D (1999) Flash fluorescence induction: a novel method to study regulation of photosystem II. J Photochem Photobiol B Biol 48:154–157

    Article  CAS  Google Scholar 

  • Nirupama M, Mohn FH (2003) Use of chlorophyll fluorescence in metal-stress research: a case study with the green microalga Scenedesmus. Ecotox Env Safety 55:64–69

    Article  CAS  Google Scholar 

  • Oxborough K, Nedbal L, Chylla RA, Whitmarsh J (1996) Light dependent modification of photosystem II in spinach leaves. Photosynth Res 48:247–254

    Article  CAS  Google Scholar 

  • Paddock ML, Sagle L, Tehrani A, Beatty JT, Feher G, Okamura MY (2003) Mechanism of proton transfer inhibition by Cd2+ binding to bacterial reaction centers: determination of the pK(A) of functionally important histidine residues. Biochemistry 42:9626–9632

    Article  CAS  PubMed  Google Scholar 

  • Pastenes C, Horton P (1996) Effect of high temperature on photosynthesis in beans. I. Oxygen evolution and chlorophyll fluorescence. Plant Physiol 112:1245–1251

    CAS  PubMed  Google Scholar 

  • Perales-Vela HV, Gonzalez-Moreno S, Montes-Horcasitas C, Canizares-Villanueva RO (2007) Growth, photosynthetic and respiratory responses to sub-lethal copper concentrations in Scenedesmus incrassatulus (Chlorophyceae). Chemosphere 67:2274–2281

    Article  CAS  PubMed  Google Scholar 

  • Sayed OH (1998) Analysis of photosynthetic responses and adaptation to nitrogen starvation in Chlorella using in vivo chlorophyll fluorescence. Photosynthetica 35:611–619

    Article  Google Scholar 

  • Shotyk W, Krachler M, Chen B (2004) Antimony in recent peat from Switzerland and Scotland: comparison with natural background values (5,320 to 8,020 14C yr BP), correlation with Pb, and implications for the global atmospheric Sb cycle. Global Biogeochem Cycles 18:GB1016. doi:10.1029/2003GB002113

    Article  CAS  Google Scholar 

  • Sigfridsson KGV, Bernat G, Mamedov F, Styring S (2004) Molecular interference of Cd2+ with photosystem II. Biochim Biophys Acta 1659:19–31

    Article  CAS  PubMed  Google Scholar 

  • Smichowski P (2007) Antimony in the environment as a global pollutant: a review on analytical methodologies for its determination in atmospheric aerosols. Talanta. doi:10.1016/j.talanta11.005

    Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue–green algae (Order Chroococcales). Bacteriol Rev 35:171–205

    CAS  PubMed  Google Scholar 

  • Strasser BJ (1997) Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynth Res 52:147–155

    Article  CAS  Google Scholar 

  • Strasser RJ, Govindjee (1992) On the O–J–I–P fluorescence transient in leaves and D1 mutants of Chlamydomonas reinhardtii. In: Murata N (ed) Research in photosynthesis. Kluwer, Dordrecht, pp 29–32

    Google Scholar 

  • Strasser RJ, Srivastava A, Govindjee (1995) Polyphasic chlorophyll a fluorescence transient in plant and cyanobacteria. Photochem Photobiol 61:32–42

    Article  CAS  Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanism. Regulation and adaptation. Taylor & Francis, London, pp 443–480

    Google Scholar 

  • United Nations Environmental Program (1999) Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal with amended Annex I and two additional Annexes VIII and IX, adopted at the fourth meeting of the Conference of the Parties in 1998. SBC No. 99/001. UNEP, Geneva.

  • United States Environmental Protection Agency (1979) Water related fate of the 129 priority pollutants, vol. 1. USEPA, Washington, DC, USA, EP-440/4-79-029A. 23–29.

  • Vrettos JS, Stone DA, Brudvig GW (2001) Quantifying the ion selectivity of the Ca2+ site in photosystem II: evidence for direct involvement of Ca2+ in O2 formation. Biochemistry 40:7937–7945

    Article  CAS  PubMed  Google Scholar 

  • Warren LB, Douglas M, Sylvia B (1983) Fluorescence lifetimes in the bipartite model of the photosynthetic apparatus with α, β heterogeneity in photosystem II. Proc. Natl. Acad. Sci. USA 80:7510–7514

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Knowledge Innovation Program of Chinese Academy of Sciences (KZCX2-YW-335 and KZCX2-YW-135), Program of 100 Distinguished Young Scientists of the Chinese Academy of Sciences, National Natural Science Foundation of China (40673070, 40872169) and 863 program project 2006AA06Z339 from MOST of China. We are grateful to the editor and the anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangliang Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Pan, X., Mu, G. et al. Toxic effects of antimony on photosystem II of Synechocystis sp. as probed by in vivo chlorophyll fluorescence. J Appl Phycol 22, 479–488 (2010). https://doi.org/10.1007/s10811-009-9482-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-009-9482-1

Keywords

Navigation