Skip to main content

Advertisement

Log in

High pressure disruption: a two-step treatment for selective extraction of intracellular components from the microalga Porphyridium cruentum

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The microalga Porphyridium cruentum is known to produce many components of interest. One of them is B-Phycoerythrin (B-PE), a water-soluble intracellular pigment used as an immunofluorescent probe. Current methods to extract this molecule involve total cell disruption and lead to a mix of all the water-soluble components. Subsequently, the pigment purification is very complex. An alternative approach to extract B-PE selectively and thus simplify the purification procedure has been developed using a high-pressure cell disrupter. Different pressures (from 27 to 270 MPa), extracting mediums (distilled water and original microalgae culture medium), and numbers of passages (1 to 3) have been tested. Proteins are selectively more extracted than B-PE at low pressure in original medium. It is thus possible to remove part of the intracellular proteins in a first step and then recover enriched B-Phycoerythrin fraction at higher pressure in distilled water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aitken A, Learmonth M (1996) Protein determination by UV absorption. In: Walker JM (ed) The protein protocols handbook. Humana Press, Totowa, pp 3–6

    Chapter  Google Scholar 

  • Anand H, Balasundaram B, Pandit A, Harrison S (2007) The effect of chemical pretreatment combined with mechanical disruption on the extent of disruption and release of intracellular protein from E. coli. Biochem Engg J 35:166–173

    Article  CAS  Google Scholar 

  • Arad S, Yaron A (1992) Natural pigments from red microalgae for use in foods and cosmetics. Trends Food Sci Tech 3:92–97

    Article  CAS  Google Scholar 

  • Arad S, Adda M, Cohen E (1985a) The potential of production of sulfated polysaccharides from Porphyridium. Plant Soil 89:117–127

    Article  CAS  Google Scholar 

  • Arad S, Adda M, Merchuk JC (1985b) Potential for production of polysaccharides from the unicellular red alga Porphyridium. Abstr Pap Amer Chem Soc 190(SEP):171, MBD

    Google Scholar 

  • Arad S, Friedman O, Rotem A (1988) Effect of nitrogen on polysaccharide production in a Porphyridium sp. Appli Env Microbiol 54:2411–2414

    CAS  Google Scholar 

  • Arakawa T, Timasheff SN (1985) Theory of protein solubility. Methods Enzymol 114:49–77

    Article  PubMed  CAS  Google Scholar 

  • Balasundaram B, Harrison STL (2006) Disruption of brewers’ yeast by hydrodynamic cavitation: process variables and their influence on selective release. Biotechnol Bioeng 94:303–311

    Article  PubMed  CAS  Google Scholar 

  • Balasundaram B, Pandit AB (2001) Selective release of invertase by hydrodynamic cavitation. Biochem Eng J 8:251–256

    Article  CAS  Google Scholar 

  • Benavides J, Rito Palomares M (2004) Bioprocess intensification: a potential aqueous two-phase process for the primary recovery of B-phycoerythrin from Porphyridium cruentum. J Chromatog B 807:33–38

    Article  CAS  Google Scholar 

  • Benavides J, Rito Palomares M (2006) Simplified two-stage method to B-phycoerythrin recovery from Porphyridium cruentum. J Chromatog B 844:39–44

    Article  CAS  Google Scholar 

  • Bermejo Roman R, Alvarez-Pez JM, Acien Fernandez FG, Molina Grima E (2002) Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. J Biotech 93:73–85

    Article  CAS  Google Scholar 

  • Bermejo R, Talavera EM, Alvarez-Pez JM (2001) Chromatographic purification and characterization of B-phycoerythrin from Porphyridium cruentum. Semipreparative high-performance liquid chromatographic separation and characterization of its subunits. J Chromatog A 917:135–145

    Article  CAS  Google Scholar 

  • Bermejo R, Acien FG, Ibanez M, Fernandez J, Molina E, Alvarezpez J (2003) Preparative purification of B-phycoerythrin from the microalga Porphyridium cruentum by expanded-bed adsorption chromatography. J Chromatog B 790:317–325

    Article  CAS  Google Scholar 

  • Brody M, Vatter AE (1959) Observations on cellular structures of Porphyridium cruentum. J Biophys Biochem Cytol 5:289–300

    Article  PubMed  CAS  Google Scholar 

  • Chisti Y, Moo-Yong M (1986) Disruption of microbial cells for intracellular products. Enzyme Microb Technol 8:194–204

    Article  CAS  Google Scholar 

  • Collins S, Attouche C, Yau C, Jones M, Lovitt R (1996) An investigation of microorganisms using a new type of cell homogenizer. IchemE Research Event/Second European Conference for Young Researchers:52–54

  • Csogör Z, Kiessling B, Perner I, Fleck P, Posten C (2001) Growth and product formation of Porphyridium purpureum. J Appl Phycol 13:317–324

    Article  Google Scholar 

  • Gantt E, Conti SF (1965) The ultrastructure of Porphyridium cruentum. J Cell Biol 26:364–381

    Article  Google Scholar 

  • Geciova J, Bury D, Jelen P (2002) Methods for disruption of microbial cells for potential use in the dairy industry—a review. Inte Dairy J 12:541–553

    Article  CAS  Google Scholar 

  • Halim R, Harun R, Danquah MK, Webley PA (2012) Microalgal cell disruption for biofuel development. Appl Energy 91:116–121

    Article  CAS  Google Scholar 

  • Hemerick G (1973) Culture methods and growth measurements. In: Stein JR (ed) Handbook of phycological methods. Cambridge University Press, New York, pp 259–260

    Google Scholar 

  • Jones RF, Kury W, Speer HL (1963) Studies on growth of red alga Porphyridium cruentum. Physiol Plant 16:636–643

    Article  CAS  Google Scholar 

  • Klotz B, Mañas P, Mackey BM (2010) The relationship between membrane damage, release of protein and loss of viability in Escherichia coli exposed to high hydrostatic pressure. Int J Food Microbiol 137:214–220

    Article  PubMed  CAS  Google Scholar 

  • Kronick MN (1986) The use of phycobiliproteins as fluorescent labels in immunoassay. J Immunol Meth 92:1–13

    Article  CAS  Google Scholar 

  • Loubiere K, Pruvost J, Aloui F, Legrand J (2011) Investigations in an external-loop airlift photobioreactor with annular light chambers and swirling flow. Chem Eng Rese Design 89:164–171

    Article  CAS  Google Scholar 

  • Lovitt RW, Jones M, Collins SE, Coss GM, Yau CP, Attouch C (2000) Disruption of bakers’ yeast using a disrupter of simple and novel geometry. Process Biochemiy 36:415–421

    Article  CAS  Google Scholar 

  • Middelberg APJ (1995) Process-scale disruption of microorganisms. Biotech Advs 13:491–551

    Article  CAS  Google Scholar 

  • Ramus J (1972) Production of extracellular polysaccharide by unicellular red alga Porphyridium aerugineum. J Phycol 8:97–111

    CAS  Google Scholar 

  • Rice NM, Irving H, Leonard MA (1993) Nomenclature for liquid-liquid distribution (solvent-extraction) (IUPAC recommendations 1993). Pure Appl Chem 65:2373–2396

    Article  CAS  Google Scholar 

  • Rito Palomares MA, Benavides Lozano JA, Hernandez Mireles TD (2008) Recovery and purification of B-phycoerythrin produced by Porphyridium cruentum using two-aqueous-phase systems and isoelectric precipitation. US Patent 8178321

  • Rossignol N, Moan R, Jaouen P, Robert JM, Quemeneur F (1999) Continuous high-pressure disruption of marine diatom Haslea ostrearia. Assessment by laser diffraction particle sizer. Biotechnol Techniq 13:909–913

    Article  CAS  Google Scholar 

  • Shynkaryk MV, Lebovka NI, Lanoisellé JL, Nonus M, Bedel-Clotour C, Vorobiev E (2009) Electrically-assisted extraction of bio-products using high pressure disruption of yeast cells (Saccharomyces cerevisiae). J Food Eng 92:189–195

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the French National Research Agency (ANR) in the framework of the “Algoraffinerie” program. This involves three French laboratories, namely, GEPEA (Nantes University), LCA (Toulouse University), LGCB (Clermont-Ferrand University), and a start-up, Algosource Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Marchal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jubeau, S., Marchal, L., Pruvost, J. et al. High pressure disruption: a two-step treatment for selective extraction of intracellular components from the microalga Porphyridium cruentum . J Appl Phycol 25, 983–989 (2013). https://doi.org/10.1007/s10811-012-9910-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-012-9910-5

Keywords

Navigation