Skip to main content
Log in

Analysing the colonisation of inoculated cyanobacteria in wheat plants using biochemical and molecular tools

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The modulation in physiological and metabolic attributes associated with colonisation by cyanobacteria in wheat has been little explored. In the present investigation, the performance of six selected cyanobacterial strains was evaluated with wheat (variety HD2687). The fresh weight of plants, measured after 2 weeks, exhibited a 30–60 % increase, while 14–40 % increase in plant dry weight was also recorded, as compared to uninoculated control. The nitrogen-fixing potential (expressed as acetylene-reducing activity or ARA) was 20-fold higher in the treatment involving inoculation of Anabaena laxa RPAN8 as compared to that in the uninoculated control. The inoculation of Calothrix sp. RPC1 brought about a more than 90 % increase in endoglucanase activity and root chlorophyll. Comparison of DNA fingerprints (highly iterated palindrome (HIP)-TG profiles) of wheat roots with those of corresponding pure cultures revealed a high degree of similarity, confirming the colonisation. Significant correlation of plant parameters with nitrogen-fixing potential and growth attributes and fingerprints of cyanobacteria from roots further illustrated the novelty of our results. This represents a first report on understanding hydrolytic enzyme-mediated colonisation of cyanobacteria on roots of wheat plants using plant growth parameters and DNA fingerprints. Such synergistic combinations of cyanobacterium and wheat can lead to savings of nitrogen and increased yields, besides being a prelude to generating nitrogen-independent wheat plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Buchanan M, Burton R, Dhugga K, Rafalski A, Tingey S, Shirley N, Fincher G (2012) Endo-(1,4)-beta-glucanase gene families in the grasses: temporal and spatial Co-transcription of orthologous genes. BMC Plant Biol 12(1):235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Çakmakçi R, Dönmez F, Aydın A, Şahin F (2006) Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol Biochem 38:1482–1487

    Article  Google Scholar 

  • Chaudhary V, Prasanna R, Bhatnagar AK (2012) Modulation of fungicidal potential of Anabaena strains by light and temperature. Folia Microbiol 57:199-208

  • Cox WJ, Reisenauer HM (1973) Growth and ion uptake by wheat supplied nitrogen as nitrate, or ammonium, or both. Plant Soil 38:363–380

    Article  CAS  Google Scholar 

  • Daizy R, Kohli RK (1991) Fresh matter is not an appropriate relation unit for chlorophyll content: experience from experiments on effect of herbicide and allelopathic substance. Photosynthetica 25:655–657

    Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

  • Dommergues Y, Balandreau J, Rinaudo G, Weinhard P (1973) Non-symbiotic nitrogen fixation in the rhizospheres of rice, maize and different tropical grasses. Soil Biol Biochem 5:83–89

    Article  CAS  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Gantar M (2000) Mechanical damage of roots provides enhanced colonization of the wheat endorhizosphere by the dinitrogen-fixing cyanobacterium Nostoc sp. strain 2S9B. Biol Fertil Soils 32:250–255

    Article  Google Scholar 

  • Gantar M, Elhai J (1999) Colonization of wheat para-nodules by the N2-fixing cyanobacterium Nostoc sp. strain 2S9B. New Phytol 141:373–379

    Article  Google Scholar 

  • Gantar M, Kerby NW, Rowell P, Obreht Z (1991) Colonization of wheat (Triticum vulgare L.) by N2-fixing cyanobacteria: I. A survey of soil cyanobacterial isolates forming associations with roots. New Phytol 118:477–483

    Article  Google Scholar 

  • Gantar M, Kerby NW, Rowell P, Obreht Z, Scrimgeour C (1995) Colonization of wheat (Triticum vulgare L.) by N2-fixing cyanobacteria. New Phytol 129:337–343

    Article  CAS  Google Scholar 

  • Gupta V, Prasanna R, Chaudhary V, Nain L (2012) Biochemical, structural and functional characterization of two novel antifungal endoglucanases from Anabaena laxa. Biocatal Agric Biotechnol 1:338–347

    CAS  Google Scholar 

  • Gupta V, Ratha SK, Sood A, Chaudhary V, Prasanna R (2013) New insights into the biodiversity and applications of cyanobacteria (blue-green algae)—prospects and challenges. Algal Res 2:79–97

    Article  Google Scholar 

  • Hageman RH (1984) Ammonium versus nitrate nutrition of higher plants. In: Nitrogen in crop production. Am Soc Agron, Madison, WI, p. 804

  • Hiroki M, Shimizu A, Li R, Watanabe M, Watanabe MM (1998) Development of a database system useful for identification of Anabaena spp. (Cyanobacteria). Phycol Res 46:85–93

    Article  Google Scholar 

  • Hisbergues M, Christiansen G, Rouhiainen L, Sivonen K, Börner T (2003) PCR-based identification of microcystin-producing genotypes of different cyanobacterial genera. Arch Microbiol 180:402–410

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal P, Prasanna R, Nayak S, Sood A, Suseela MR (2008) Characterization of rhizo-cyanobacteria and their associations with wheat seedlings. Egypt J Biol 10:20–27

    Google Scholar 

  • Karthikeyan M, Radhika K, Mathiyazhagan S, Bhaskaran R, Samiyappan R, Velazhahan R (2006) Induction of phenolics and defense-related enzymes in coconut (Cocos nucifera L.) roots treated with biocontrol agents. Braz J Plant Physiol 18:367–377

    Article  CAS  Google Scholar 

  • Karthikeyan N, Prasanna R, Lata N, Kaushik BD (2007) Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. Eur J Soil Biol 43:23–30

  • Karthikeyan N, Prasanna R, Sood A, Jaiswal P, Nayak S, Kaushik BD (2009) Physiological characterization and electron microscopic investigation of cyanobacteria associated with wheat rhizosphere. Folia Microbiol 54:43–51

    Article  CAS  Google Scholar 

  • Kaushik BD (2004) Use of blue green algae and Azolla biofertilizer in rice cultivation and their influence on soil properties. In: Jain PC (ed) Microbiology and Biotechnology for sustainable development. CBS, New Delhi, pp 166–184

    Google Scholar 

  • Kloepper J, Ryu C-M (2006) Bacterial endophytes as elicitors of induced systemic resistance. In: Schulz BE, Boyle CC, Sieber T (eds) Microbial root endophytes, vol 9. Soil biology. Springer, Berlin, pp 33–52

    Chapter  Google Scholar 

  • Knight CD, Adams DG (1996) A method for studying chemotaxis in nitrogen fixing cyanobacterium-plant symbioses. Physiol Mol Plant Pathol 49:73–77

    Article  Google Scholar 

  • Kovtunovych G, Lar O, Kleiner D, Kozyrovska N (1999) Enhancing the internal plant colonization rate with endophytic nitrogen-fixing bacteria. Biopolimery i Kletka 15(4):300–305

    Google Scholar 

  • Loon LCV, Bakker PAHM, Pieterse CMJ (1998) Systematic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Lucas García JA, Probanza A, Ramos B, Colón Flores JJ, Gutiérrez Mañero FJ (2004) Effects of plant growth promoting rhizobacteria (PGPRs) on the biological nitrogen fixation, nodulation, and growth of Lupinus albus l. cv. Multolupa. Eng Life Sci 4:71–77

    Article  Google Scholar 

  • Mackinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140(2):315–322

    CAS  Google Scholar 

  • Mäder P, Kaiser F, Adholeya A, Singh R, Uppal HS, Sharma AK, Srivastava R, Sahai V, Aragno M, Wiemken A, Johri BN, Fried PM (2011) Inoculation of root microorganisms for sustainable wheat–rice and wheat–black gram rotations in India. Soil Biol Biochem 43:609–619

    Article  Google Scholar 

  • Manjunath M, Prasanna R, Nain L, Dureja P, Singh R, Kumar A, Jaggi S, Kaushik BD (2009) Biocontrol potential of cyanobacterial metabolites against damping off disease caused by Pythium aphanidermatum in solanaceous vegetables. Arch Phytopathol Plant Protect 43:666–677

    Article  Google Scholar 

  • McCowen S, MacArthur L, Gates J (1986) Azolla fern lectins that specifically recognize endosymbiotic cyanobacteria. Curr Microbiol 14:329–333

    Article  Google Scholar 

  • Nain L, Rana A, Joshi M, Jadhav S, Kumar D, Shivay YS, Paul S, Prasanna R (2010) Evaluation of synergistic effects of bacterial and cyanobacterial strains as biofertilizers for wheat. Plant Soil 331:217–230

    Article  CAS  Google Scholar 

  • Nayak S, Prasanna R, Pabby A, Dominic TK, Singh PK (2004) Effect of urea, blue green algae and Azolla on nitrogen fixation and chlorophyll accumulation in soil under rice. Biol Fertil Soils 40:67–72

    Article  CAS  Google Scholar 

  • Nayak S, Prasanna R, Prasanna BM, Sahoo D (2009) Genotypic and phenotypic diversity of Anabaena isolates from diverse rice agro-ecologies of India. J Basic Microbiol 49:165–177

    Article  CAS  PubMed  Google Scholar 

  • Obreht Z, Kerby N, Gantar M, Rowell P (1993) Effects of root-associated N2-fixing cyanobacteria on the growth and nitrogen content of wheat (Triticum vulgare L.) seedlings. Biol Fertil Soils 15:68–72

    Article  CAS  Google Scholar 

  • Patil HJ, Srivastava AK, Singh DP, Chaudhari BL, Arora DK (2011) Actinomycetes mediated biochemical responses in tomato (Solanum lycopersicum) enhances bioprotection against Rhizoctonia solani. Crop Prot 30:1269–1273

    Article  CAS  Google Scholar 

  • Piromyou P, Buranabanyat B, Tantasawat P, Tittabutr P, Boonkerd N, Teaumroong N (2011) Effect of plant growth promoting rhizobacteria (PGPR) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand. Eur J Soil Biol 47:44–54

    Article  CAS  Google Scholar 

  • Prasanna R, Lata, Tripathi R, Gupta V, Middha S, Joshi M, Ancha R, Kaushik BD (2008) Evaluation of fungicidal activity of extracellular filtrates of cyanobacteria-possible role of hydrolytic enzymes. J Basic Microbiol 48:186–194

    Article  CAS  PubMed  Google Scholar 

  • Prasanna R, Jaiswal P, Nayak S, Sood A, Kaushik B (2009) Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Indian J Microbiol 49:89–97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prasanna R, Joshi M, Rana A, Shivay Y, Nain L (2012) Influence of co-inoculation of bacteria-cyanobacteria on crop yield and C–N sequestration in soil under rice crop. World J Microbiol Biotechnol 28:1223–1235

    Article  CAS  PubMed  Google Scholar 

  • Prasanna R, Chaudhary V, Gupta V, Babu S, Kumar A, Singh R, Shivay Y, Nain L (2013a) Cyanobacteria mediated plant growth promotion and bioprotection against Fusarium wilt in tomato. Eur J Plant Pathol 136:337–353

    Article  Google Scholar 

  • Prasanna R, Sharma E, Sharma P, Kumar A, Kumar R, Gupta V, Pal R, Shivay Y, Nain L (2013b) Soil fertility and establishment potential of inoculated cyanobacteria in rice crop grown under non-flooded conditions. Paddy Water Environ 11:175–183

    Article  Google Scholar 

  • Prasanna R, Triveni S, Bidyarani N, Babu S, Yadav K, Adak A, Khetarpal S, Pal M, Shivay YS, Saxena AK (2013c) Evaluating the efficacy of cyanobacterial formulations and biofilmed inoculants for leguminous crops. Arch Agron Soil Sci 60:1–18

    Google Scholar 

  • Rai AN (1990) CRC Handbook of Symbiotic Cyanobacteria. CRC Press Inc., Boca Raton

  • Rai AN, Soderback E, Bergman B (2000) Cyanobacterial plant symbioses. New Phytol 147:449–481

    Article  CAS  Google Scholar 

  • Rasmussen U, Svenning MM (1998) Fingerprinting of cyanobacteria based on PCR with primers derived from short and long tandemly repeated repetitive sequences. Appl Environ Microbiol 64:265–272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Singh RK, Chaudhary BD (1979) Biometrical methods in quantitative genetic analysis. Kalyani Publishers, Ludhiana, p 303

    Google Scholar 

  • Singh D, Prabha R, Yandigeri M, Arora D (2011) Cyanobacteria-mediated phenylpropanoids and phytohormones in rice (Oryza sativa) enhance plant growth and stress tolerance. Anton van Leeuw 100:557–568

    Article  CAS  Google Scholar 

  • Spiller H, Stallings W Jr, Woods T, Gunasekaran M (1993) Requirement for direct association of ammonia-excreting Anabaena variabilis mutant (SA-1) with roots for maximal growth and yield of wheat. Appl Microbiol Biotechnol 40:557–566

    CAS  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. In: Current protocols in bioinformatics. John Wiley Sons, Inc.

  • Venkataraman GS (1972) Algal biofertilizer and rice cultivation. Today and Tomorrow Publications, New Delhi

    Google Scholar 

  • Venkataraman GS, Neelakantan S (1967) Effect of cellular constituents of nitrogen fixing blue green alga Cylindrospermum on root growth of rice plants. J Gen Appl Microbiol 13:53–62

    Article  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weissman GS (1951) Nitrogen metabolism of wheat seedlings as influenced by the ammonium: nitrare ratio and the hydrogen ion concentration. Am J Bot 38:162–174

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported partially by the funds from the Application of Microorganisms in Agricultural and Allied Sectors (AMAAS) Network Project on Microorganisms (Themes: Microbial Genomics; Nutrient Management) granted by Indian Council of Agricultural Research (ICAR), New Delhi. The authors are also grateful to the National Phytotron Facility and Division of Microbiology, IARI, New Delhi, for providing the necessary facilities for undertaking this study. The authors state that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radha Prasanna.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOC 37 kb)

Supplementary Table 2

(DOC 53 kb)

Supplementary Table 3

(DOC 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, S., Prasanna, R., Bidyarani, N. et al. Analysing the colonisation of inoculated cyanobacteria in wheat plants using biochemical and molecular tools. J Appl Phycol 27, 327–338 (2015). https://doi.org/10.1007/s10811-014-0322-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0322-6

Keywords

Navigation