Skip to main content
Log in

Encapsulation and Release Characteristics of Carbon Dioxide in α-Cyclodextrin

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

Encapsulation and release of carbon dioxide (CO2) into and from α-cyclodextrin (α-CD) was studied. Initial moisture content of α-CD and CO2 pressure were found to have affected the encapsulation behavior. The increase of CO2 pressure has constantly accelerated the encapsulation rates and increased the maximum inclusion ratio, whereas the increase of initial moisture content showed no consistent effect. The saturated α-CD solution produced the inclusion complex crystal of similar inclusion ratio to solid α-CD. The release characteristics of inclusion complexes were also monitored at various relative humidities at 25 °C. Predominantly, increase in storage humidity accelerated the release of CO2. The inclusion complex crystal prepared from saturated α-CD solution showed the most stable release characteristic at all storage humidities investigated. The encapsulation and the release characteristics were analyzed using the first-order reaction equation and the Avrami’s equation respectively, in order to estimate the rate processes of encapsulation and release. The FT-IR spectra of inclusion complexes presented an absorption band at wavenumber around 2338 cm−1, indicating CO2 molecules resided inside the α-CD cavities in gaseous state rather than being bound to the hydroxyl groups of α-CD. Powder X-ray diffractometry was carried out to investigate the crystal lattice structure of α-CD and inclusion complexes. Scanning electron microscopy was also performed for morphological examination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rudkevich D.M., Leontiev A.V., Aust. J. Chem. 57, 713 (2004)

    Article  CAS  Google Scholar 

  2. Hassonville S.H.D., Perly B., Piel G., Hees T.V., Barillaro V., Bertholet P., Delattre L., Evrard B., J. Incl. Phenom. Macrocyclic Chem. 44, 289 (2002)

    Article  Google Scholar 

  3. Rawata S., Jain S.K., Eur. J. Pharm. Biopharm. 57, 263 (2004)

    Article  PubMed  CAS  Google Scholar 

  4. Yáñez C., Salazar R., Núñez-Vergara L.J., Squella J.A., J. Pharm. Biomed. Anal. 35, 51 (2004)

    Article  PubMed  CAS  Google Scholar 

  5. Kamada M., Hirayama F., Udo K., Yano H., Arima H., Uekama K., J. Control. Release 82, 407 (2002)

    Article  PubMed  CAS  Google Scholar 

  6. Cramer F., Henglein F.M., Chem. Ber. 90, 2572 (1957)

    CAS  Google Scholar 

  7. Atwood J.L., Barbour L.J., Jerga A., Angew. Chem. Int. Ed. 43, 2948 (2004)

    Article  CAS  Google Scholar 

  8. Fenyvesi É., Szente L., Russell N.R., McNamara M., (1996) Specific guest types In Szejtli J., Osa T., (eds.), Comprehensive Supramolecular Chemistry Vol. 3: Cyclodextrin, Pergamon Press Oxford pp. 305–366

    Google Scholar 

  9. J. Daly and B. Kourelis: US Patent 6017849 (2000)

  10. H. Yorozu, Y. Abe and Y. Eguchi: Japanese Patent S62–039602 (1987)

  11. H. Yorozu, Y. Eguchi, W. Ohkawa, and Y. Matsumoto: European Patent EP0229616 (1987)

  12. S. Rahman: Water Activity and Sorption Properties of Foods. In Food Properties Handbook, CRC Press, Boca Raton (1995), pp. 1–86

  13. Saenger W., Steiner T., Acta Cryst. A 54, 798 (1998)

    Article  Google Scholar 

  14. Nakai Y., Yamamoto K., Terada K., Kajiyama A., Sasaki I., Chem. Pharm. Bull. 34, 2178 (1986)

    CAS  Google Scholar 

  15. Klar B., Hingerty B., Saenger W., Acta Cryst. B36, 1154 (1980)

    CAS  Google Scholar 

  16. Saenger W., Noltemeyer M., Manor P.C., Hingerty B., Klar B., Bioorg. Chem. 5, 187 (1976)

    Article  CAS  Google Scholar 

  17. Buschmann H., Schollmeyer E., J. Sol. Chem. 34, 731 (2005)

    Article  CAS  Google Scholar 

  18. Yoshii H., Furuta T., Yasunishi A., Hirano H., J. Biochem. (Tokyo) 115, 1035 (1994)

    CAS  Google Scholar 

  19. Rehmann L., Yoshii H., Furuta T., Starch/Stärke 55, 313 (2003)

    Article  CAS  Google Scholar 

  20. Graham B.F., Harrowfield J.M., Tengrove R.D., Lagalante A.F., Bruno T.J., J. Incl. Phenom. Macrocyclic Chem. 43, 179 (2002)

    Article  CAS  Google Scholar 

  21. Yoshii H., Soottitantawat A., Liu X.D., Atarashi T., Furuta T., Aishima S., Ohgawara M., Linko P., Innov. Food Sci. Emerg. Technol. 2, 55 (2001)

    Article  CAS  Google Scholar 

  22. Soottitantawat A., Yoshii H., Furuta T., Ohgawara M., Forssell P., Partanen R., Poutanen K., Linko P., J. Agric. Food Chem. 52, 1269 (2004)

    PubMed  CAS  Google Scholar 

  23. Tasumi M., (1994) Basic and Practical Infrared Spectroscopy, 2nd Edition, Kagaku Doujin, Tokyo

    Google Scholar 

  24. Urbansky E.T., J. Environ. Monit. 3, 102 (2001)

    Article  PubMed  CAS  Google Scholar 

  25. Tanaka M., Ooba T., Toda S., (1964). Infrared Spectroscopy, Hirokawa Shoten, Tokyo

    Google Scholar 

  26. Keresztury G., Incze M., Sóti F., Imre L., Spectrochimica Acta 36A, 1007 (1980)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidefumi Yoshii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neoh, TL., Yoshii, H. & Furuta, T. Encapsulation and Release Characteristics of Carbon Dioxide in α-Cyclodextrin. J Incl Phenom Macrocycl Chem 56, 125–133 (2006). https://doi.org/10.1007/s10847-006-9073-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-006-9073-6

Keywords

Navigation