Skip to main content
Log in

Corona discharge treatment route for the grafting of modified β-cyclodextrin molecules onto cellulose

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Corona discharge treatment (CDT) was implemented to attempt to graft a modified β-cyclodextrin (β-CD) onto cellulose. The occurrence of grafting was indirectly proven by gravimetric analyses, X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM). Besides, the effect of CDT onto cellulosic substrate was studied using SEM and XPS. It appeared that surface roughness increased with the treatment time as a consequence of an etching effect and that surface oxidation took place as evidenced by the creation of hydroxyl and carboxyl groups. These functional groups are not responsible for chemical link between modified β-CD and substrate. It was assumed that the grafting results from the reaction of double-bonds of modified β-CD and radicals formed on treated surface, these ones being evidenced by DPPH radical trapping. Moreover the inclusion of a guest molecule is still possible in grafted modified β-CD giving a new proof of grafting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Heinze, T., Ficher, K.: Cellulose and cellulose derivatives. Wiley-VCH, Weinheim (2005)

    Google Scholar 

  2. Hatakeyama, T., Hatakeyama, H.: Thermal properties of green polymers and biocomposites. Kluwer academic publishers, Dordrecht (2004)

    Google Scholar 

  3. Heinze, T., Petzold, K.: In: Belgacem, M.N., Gandini, A. (eds.) Cellulose chemistry: novel products and synthesis paths. Monomers, polymers and composites from renewable resources, pp. 343–368. Elsevier Ltd, Oxford, UK (2008)

    Chapter  Google Scholar 

  4. Dorn, S., Pfeifer, A., Schlufter, K., Heinze, T.: Synthesis of water-soluble cellulose esters applying carboxylic acid imidazolides. Polym. Bull 64, 845–854 (2010)

    Article  CAS  Google Scholar 

  5. Kasai, W., Tsutsumi, K., Morita, M., Kondo, T.: Orientation of the alkyl side chains and glucopyranose rings in Langmuir–Blodgett films of a regioselectively substituted cellulose ether. Colloid Polym. Sci. 286, 707–712 (2008)

    Article  CAS  Google Scholar 

  6. Lei, J., Shi, M., Zhang, J.: Surface graft copolymerisation of hydrogen silicone fluid onto fabrics through Corona discharge and water repellency of grafted fabrics. Eur. Polym. J. 36, 1277–1281 (2000)

    Article  CAS  Google Scholar 

  7. Mercx, F.P.M.: Improved adhesive properties of high modulus polyethylene structures: 2. Corona grafting of acrylic acid. Polymer 34, 1891–1897 (1993)

    Article  Google Scholar 

  8. Iwata, H., Kishida, A., Suzuki, M., Hata, Y., Ikada, Y.: Oxidation of polyethylene surface by Corona discharge and subsequent graft polymerization. J. Polym. Sci. Part A 26, 3309–3322 (1988)

    Article  CAS  Google Scholar 

  9. Bataille, P., Dufourd, M., Sapieha, S.: Copolymerization of styrene onto cellulose activated by Corona. Polym. Int. 34, 387–391 (1994)

    Article  CAS  Google Scholar 

  10. Bataille, P., Dufourd, M., Sapieha, S.: Graft polymerization of styrene onto cellulose by Corona discharge. Polym. Preprints 32, 559–560 (1991)

    CAS  Google Scholar 

  11. Tu, X., Young, R.A., Denes, F.: Improvement of bonding between cellulose and polypropylene by plasma treatment. Cellulose 1, 87–106 (1994)

    Article  CAS  Google Scholar 

  12. Ooi, S.K.; Vanderhoek, N.; Morrison, R.; Bauer, A.: Atmospheric plasma treatment (APT), Understanding the basics. Appita annual conference 407–412 (2004)

  13. Dong, S., Sapieha, S., Schreiber, H.P.: Mechanical properties of Corona-modified cellulose/polyethylene composites. Polym. Eng. Sci. 33, 343–346 (1993)

    Article  CAS  Google Scholar 

  14. Belgacem, M.N., Bataille, P., Sapieha, S.: Effect of Corona modification on the mechanical properties of polypropylene/cellulose composites. J. Appl. Polym. Sci. 53, 379–385 (1994)

    Article  CAS  Google Scholar 

  15. Seto, F., Muraoka, Y., Akagi, T., Kishida, A., Akashi, M.: Surface grafting of poly(vinylamine) onto poly(ethylene) film by Corona discharge-induced grafting. J. Appl. Polym. Sci. 72, 1583–1587 (1999)

    Article  CAS  Google Scholar 

  16. Yuhai, G., Jianchun, Z., Meiwu, S.: Surface graft of acrylic acid onto Corona-treated poly(ethylene terephtalate) fabric. J. Appl. Polym. Sci. 73, 1161–1164 (1999)

    Article  Google Scholar 

  17. Martel, B., Morcellet, M., Ruffin, D., Vinet, F., Weltrowski, M.: Capture and controlled release of fragrances by CD finished textiles. J. Incl. Phenom. Macrocycl. Chem. 44, 439–442 (2002)

    Article  CAS  Google Scholar 

  18. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)

    Article  CAS  Google Scholar 

  19. de Bergamasco, R.C., Zanin, G.M., de Moraes, F.F.: Grafting of cyclodextrin onto filter paper. J. Incl. Phenom. Macrocycl. Chem. 57, 75–78 (2007)

    Article  CAS  Google Scholar 

  20. Bergeron, R.J., Meeley, M.P., Machida, Y.: Selective alkylation of cycloheptaamylose. Bioorg. Chem. 5, 121–126 (1975)

    Article  Google Scholar 

  21. Fulton, D.A., Stoddart, J.F.: Synthesis of cyclodextrins-based carbohydrate clusters by photoaddition reactions. J. Org. Chem. 66, 8309–8319 (2001)

    Article  CAS  Google Scholar 

  22. Belgacem, M.N., Czeremuszkin, G., Sapieha, S., Gandini, A.: Surface characterization of cellulose fibres by XPS and inverse gas chromatography. Cellulose 11, 145–157 (1995)

    Article  Google Scholar 

  23. Zhang, D., Sun, Q., Wadsworth, L.C.: Mechanism of Corona treatment on polyolefin films. Polym. Eng. Sci. 38, 965–970 (1998)

    Article  CAS  Google Scholar 

  24. Zheng, Z., Tang, X., Shi, M., Zhou, G.: A study of the influence of controlled Corona treatment on UHMWPE fibres in reinforced vinylester composites. Polym. Int. 52, 1833–1838 (2003)

    Article  CAS  Google Scholar 

  25. Ward, T.L., Jung, H.Z., Hinojosa, O., Benerito, R.R.: Characterization and use of radio frequency plasma-activated natural polymers. J. Appl. Polym. Sci. 23, 1987–2003 (1979)

    Article  CAS  Google Scholar 

  26. Gaiolas, C., Costa, A.P., Nunes, M., Silva, M.J.S., Belgacem, M.N.: Grafting of paper by silane coupling agents using cold-plasma discharges. Plasma Process. Polym. 5, 444–452 (2008)

    CAS  Google Scholar 

  27. Gassan, J., Gutowski, V.S.: Effects of Corona discharge and UV treatment on the properties of jute-fibre epoxy composites. Compos. Sci. Technol. 60, 2857–2863 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jacques Lambert from LCPME, CNRS UMR 7564, Nancy for XPS experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. George.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benhadi, S., Ragoubi, M., Joly, JP. et al. Corona discharge treatment route for the grafting of modified β-cyclodextrin molecules onto cellulose. J Incl Phenom Macrocycl Chem 70, 143–152 (2011). https://doi.org/10.1007/s10847-010-9879-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-010-9879-0

Keywords

Navigation