Skip to main content
Log in

Interaction of isoniazid drug with the pristine and Ni-doped of (4, 4) armchair GaNNTs: a first principle study

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In this research, the interaction of isoniazid drug (INH) with the pristine and Ni-doped Gallium nitride nanotubes (GaNNTs) is investigated by using density function theory. The adsorption energy, deformation energy, natural bond orbital (NBO), quantum parameters, molecular electrostatic potential (MEP) and thermodynamic parameters of all adsorption models are calculated from optimized structures. The values of adsorption energy, enthalpy and Gibbs free energy of all adsorption models are negative and all adsorption process are favorable in view of thermodynamic points. It is notable that Ni-doped decrease adsorption strength and it is not suitable for INH adsorption on the GaNNTs surface. The MEP, NBO and maximum amount of electronic charge ΔN results demonstrate that the negative potential are localized around adsorption position and the positive potential are localized around INH molecule. The calculated results indicate that the GaNNTs is a good candidate to making absorber and sensor for detecting INH drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dresselhaus, M.S., Dresselhaus, G., Avouris, P.: Carbon nanotubes, synthesis, structure, properties and applications. Springer, Berlin (2001)

    Google Scholar 

  2. Ferreira, M.D., Santos, J.D., Taft, C.A., Longo, E., Martins, J.B.L.: Single walled MgF2 nanotubes. Comput. Mater. Sci. 46, 233–238 (2009)

    Article  CAS  Google Scholar 

  3. Sodre, J.M., Longo, E., Taft, C.A., Martins, J.B.L., Santos, J.D.: Electronic structure of GaN nanotubes. C. R. Chim. 20, 190–196 (2017)

    Article  CAS  Google Scholar 

  4. Drygas, M., Czosnek, C., Paine, R.T., Janik, J.F.: Aerosol-assisted vapor phase synthesis of powder composites in the target system GaN/TiN for potential electronic applications. Mater. Res. Bull. 40, 1136–1142 (2005)

    Article  CAS  Google Scholar 

  5. Zhang, J., Meguid, S.A.: On the piezoelectric potential of gallium nitride nanotubes. Nano Energy 12, 322–330 (2015)

    Article  CAS  Google Scholar 

  6. Wu, G., Chen, Y.S., Xu, B.Q.: Remarkable support effect of SWNTs in Pt catalyst for methanol electrooxidation. Electrochem. Commun. 7, 1237–1243 (2005)

    Article  CAS  Google Scholar 

  7. Lan, Y., Lin, F., Li, Y., Dias, Y., Wang, H., Liu, Y., Yang, Z., Zhou, H., Lu, Y., Bao, J., Ren, Z., Crimp, M.A.: Gallium nitride porous microtubules self-assembled from wurtzite nanorods. J. Cryst. Growth 415, 139–145 (2015)

    Article  CAS  Google Scholar 

  8. Goldberger, J., He, R., Zhang, Y., Lee, S., Yan, H., Choi, H. J., Yang, P.: Single-crystal gallium nitride nanotubes. Nature 422, 599–602 (2003)

    Article  CAS  Google Scholar 

  9. Rouhi, S.: Molecular dynamics simulation of the adsorption of polymer chains on CNTs, BNNTs and GaNNTs. Fibers. Polym. 17, 333–342 (2016)

    Article  CAS  Google Scholar 

  10. Liliental-Weber, Z., Chen, Y., Ruvimov, S., Washburn, J.: Formation mechanism of nanotubes in GaN. Phys. Rev. Lett. 79, 2835–2838 (1997)

    Article  CAS  Google Scholar 

  11. Valedbagi, S., Mohammad Elahi, S., Abolhassani, M.R., Fathalian, A., Esfandiar, A.: Effects of vacancies on electronic and optical properties of GaN nanosheet: a density functional study. Opt. Mater. 47, 44–50 (2015)

    Article  CAS  Google Scholar 

  12. Park, Y.S., Lee, G., Holmes, M.J., Chan, C.C.S., Reid, B.P.L., Alexander Webber, J.A., Nicholas, R.J., Taylor, R.A., Kim, K.S., Han, S.W., Yang, W., Jo, Y., Kim, J.: Surface-effect-induced optical bandgap shrinkage in GaN nanotubes. Nano Lett. 15(7), 4472–4476 (2015)

    Article  CAS  Google Scholar 

  13. Lee, S.M., Lee, Y.H., Hwang, Y.G., Elsner, J., Porezag, D., Frauenheim T.: Stability and electronic structure of GaN nanotubes from density-functional calculations. Phys. Rev. B 60, 7788–7795 (1999)

    Article  CAS  Google Scholar 

  14. Zhang, M., Su, Z.M., Yan, L.K., Qiu, Y.Q., Chen, G.H., Wang, R.S.: Theoretical interpretation of different nanotube morphologies among Group III (B, Al, Ga) nitrides. Chem. Phys. Lett. 408, 145–149 (2005)

    Article  CAS  Google Scholar 

  15. Behzad, S.: Electronic structure, optical absorption and energy loss spectra of GaN graphitic sheet. J. Mater. Sci. Mater. Electron. 26, 9898–9906 (2015)

    Article  CAS  Google Scholar 

  16. Dai, X., Messanvi, A., Zhang, H., Durand, C., Eymery, J., Bougerol, C., Julien, F.H., Tchernycheva, M.: Flexible light-emitting diodes based on vertical nitride nanowires. Nano Lett. 15, 6958–6964 (2015)

    Article  Google Scholar 

  17. Gobler, C., Bierbrauer, C., Moser, R., Kunzer, M., Holc, K., Pletschen, W., Keohler, K., Wagner, J., Schwaerzle, M., Ruther, P., Paul, O., Neef, J., Keppeler, D., Hoch, G., Moser, T., Schwarz, U.T..: GaN-based micro-LED arrays on flexible substrates for optical cochlear implants. J. Phys. D 47, 205401–205410 (2014)

    Article  Google Scholar 

  18. Hemmingsson, C., Pozina, G., Khromov, S., Monemar, B.: Growth of GaN nanotubes by halide vapor phase epitaxy. Nanotechnology 22, 085602–085620 (2011)

    Article  Google Scholar 

  19. Ismail-Beigi, S.: Electronic excitations in single-walled GaN nanotubes from first principles: dark excitons and unconventional diameter dependences. Phys. Rev. B 77, 035306 (2008)

    Article  Google Scholar 

  20. Star, A., Joshi, V., Skarupo, S., Thomas, D., Jean-Christophe, P.G.: Gas sensor array based on metal-decorated carbon nanotubes. J. Phys. Chem. B 110, 21014–21020 (2006)

    Article  CAS  Google Scholar 

  21. Han, W., Bando, Y., Kurashima, K., Sato, T.: Boron-doped carbon nanotubes prepared through a substitution reaction. Chem. Phys. Lett. 299, 368–373 (1999)

    Article  CAS  Google Scholar 

  22. Ricardo, A., Guirado-Lopez, M.S., Rincon, M.E.: Interaction of acetone molecules with carbon-nanotube-supported TiO2 nanoparticles: possible applications as room temperature molecular sensitive coatings. J. Phys. Chem. C 111, 57–65 (2007)

    Article  Google Scholar 

  23. Dag, S., Ozturk, Y., Ciraci, S., Yildirim, T.: Adsorption and dissociation of hydrogen molecules on bare and functionalized carbon nanotubes. Phys. Rev. B 72, 155404–155410 (2005)

    Article  Google Scholar 

  24. Lu, Y.J., Li, J., Han, J., Ng, H.T., Binder, C., Partridge, C., Meyyappan, M.: Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors. Chem. Phys. Lett. 391, 344–348 (2004)

    Article  CAS  Google Scholar 

  25. Mukhopadhyay, I., Hoshino, N., Kawasaki, S., Okino, F., Hsu, W.K., Touhara, H.: Electrochemical Li insertion in B-doped multiwall carbon nanotubes. J. Electrochem. Soc. 49, A39‒A44 (2002)

    Google Scholar 

  26. Eatontown, N.J.: Isoniazid. West-Ward Pharmaceutical Corp., Eatontown (2014)

    Google Scholar 

  27. Atlanta, G.A.: Isoniazid. Mikart, Inc., Atlanta (2015)

    Google Scholar 

  28. Princeton, N.J.: Isoniazid. Sandoz, Inc., Holzkirchen (2009)

    Google Scholar 

  29. Wei, C.J., Lei, B., Musser, J.M., Tu, S.C.: Isoniazid activation defects in recombinant Mycobacterium tuberculosis catalase-peroxidase (KatG) mutants evident in InhA inhibitor production. Antimicrob. Agents Chemother. 47, 670–675 (2003)

    Article  CAS  Google Scholar 

  30. Alger, N.E., Spira, D.T., Silverman, P.H.: Inhibition of rodent malaria in mice by rifampicin. Nature 227, 381–382 (1970)

    Article  CAS  Google Scholar 

  31. Nayak, P., Swati Patankar, A., Madhusudhan, B.: Assessment of in vivo antimalarial activity of rifampicin, isoniazid, and ethambutol combination therapy. Parasitol. Res. 106, 1481–1484 (2010)

    Article  Google Scholar 

  32. Rezaei-Sameti, M., Yaghoobi S.: Theoretical study of adsorption of CO gas on pristine and AsGa-doped (4, 4) armchair models of BPNTs. Comput. Conds. Matter 3, 21–29 (2015)

    Article  Google Scholar 

  33. Rezaei-Sameti, M., Kazemi, A.: A computational study on the interaction between O2 and pristine and Ge-doped aluminum phosphide nanotubes. Turk. J. Phys. 39, 128–136 (2015)

    Article  CAS  Google Scholar 

  34. Rezaei-Sameti, M., Saki, F.: The interaction of HCN gas on the surface of pristine, Ga, N and GaN-doped (4, 4) armchair models of BPNTs: a computational approach. Phys. Chem. Res. 3(4), 265–277 (2015)

    Google Scholar 

  35. Rezaei-Sameti, M., Dadfar, E.A.: The effects of F2 adsorption on NMR parameters of undoped and 3Cdoped (8, 0) zigzag BPNTs. Iran. Chem. Commun. 4, 1–12 (2016)

    CAS  Google Scholar 

  36. Rezaei-Sameti, M., Samadi Jamil, E.: The adsorption of CO molecule on pristine, As, B, BAs doped (4, 4) armchair AlNNTs: a computational study. J. Nanostruct. Chem. 6,197–05 (2016)

    Article  Google Scholar 

  37. Rezaei-Sameti, M., Hemmati, N.: N2O interaction with the pristine and 1Ca- and 2Ca-doped beryllium oxide nanotube: a computational study. J. Nanostruct. Chem. 6, 343–355 (2016)

    Article  Google Scholar 

  38. Frisch, M.J., et al.: Gaussian 09, Revision A.02, Gaussian Inc. Wallingford (2009)

    Google Scholar 

  39. James, C., Amalraj, A., Reghunathan, R., Hubert Joe, I., Jaya Kumar, V.S.: Structural conformation and vibrational spectroscopic studies of 2, 6-bis (p-N, N-dimethyl benzylidene) cyclohexanone using density functional theory. J. Raman. Spectrosc. 37, 1381–1392 (2006)

    Article  CAS  Google Scholar 

  40. Na, L.J., Rang, C.Z., Fang, Y.S.: Study on the prediction of visible absorption maxima of azobenzene compounds. J. Zhejiang Univ. Sci. 6, 584–589 (2005)

    Google Scholar 

  41. Keresztury, G., Holly, S., Varga, J., Besenyei, G., Wang, A.V., Durig, J.R.: Vibrational spectra of monothiocarbamates-II. IR and Raman spectra, vibrational assignment, conformational analysis and ab initio calculations of S-methyl-N, N. Spectrochim. Acta Part A 49, 2007–2017 (1993)

    Article  Google Scholar 

  42. Bader, R.F.W.: Atoms in Molecules: A Quantum Theory. Oxford University Press, New York (1990)

    Google Scholar 

  43. Biegler-Konig, F.: AIM2000 Designed. University of Applied Sciences, Bielefeld (2001)

    Google Scholar 

  44. Shahabi, M., Raissi, H.: Investigation of the molecular structure, electronic properties, AIM, NBO, NMR and NQR parameters for the interaction of Sc, Ga and Mg-doped (6, 0) aluminum nitride. J. Incl. Phenom. Macrocyc. Chem. 84, 99–114 (2016)

    Article  CAS  Google Scholar 

  45. Peralta-Inga, Z., Lane, P., Murray, J. S., Boyd, S., Grice, M.E., O’Connor, C.J., Politzer, P.: Characterization of surface electrostatic potentials of some (5, 5) and (n, 1) carbon and boron/nitrogen model nanotubes. Nano. Lett. 3(1), 21–28 (2003)

    Article  CAS  Google Scholar 

  46. Bulat, F., Toro-Labbe, A., Brinck, T., Murray, J. S., Politzer, P.: Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J. Mol. Model. 16(11), 1679–1691 (2010)

    Article  CAS  Google Scholar 

  47. Bulat, F.A., Burgess, J.S., Matis, B.R., Baldwin, J.W., Macaveiu, L., Murray, J.S., Politzer, P.: Hydrogenation and fluorination of graphene models: analysis via the average local ionization energy. J. Phys. Chem. A 116(33), 8644–8652 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank from the nano computational centre of Malayer Universities for supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rezaei-Sameti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11311 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei-Sameti, M., Moradi, F. Interaction of isoniazid drug with the pristine and Ni-doped of (4, 4) armchair GaNNTs: a first principle study. J Incl Phenom Macrocycl Chem 88, 209–218 (2017). https://doi.org/10.1007/s10847-017-0720-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-017-0720-x

Keywords

Navigation