Skip to main content
Log in

Texture Generation for Photoacoustic Elastography

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Elastographic imaging is a widely used technique which can in principle be implemented on top of every imaging modality. In elastography, the specimen is exposed to a force causing local displacements, and imaging is performed before and during the displacement experiment. The computed mechanical displacements can either directly be used for clinical diagnosis or deliver a basis for the deduction of material parameters. Photoacoustic imaging is an emerging image modality, which exhibits functional and morphological contrast. However, opposed to ultrasound imaging, for instance, it is considered a modality which is not suited for elastography, because it does not reveal speckle patterns. However, this is somehow counterintuitive, because photoacoustic imaging makes available the whole frequency spectrum as opposed to single frequency standard ultrasound imaging. In this work, we show that in fact artificial speckle patterns can be introduced by using only a band-limited part of the measurement data. We also show that after introduction of artificial speckle patterns, deformation estimation can be implemented more reliably in photoacoustic imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. http://thenounproject.com/term/tree/16622/.

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Pure and Applied Mathematics

  2. Agranovsky, M., Berenstein, C., Kuchment, P.: Approximation by spherical waves in \({L}^p\)-spaces. J. Geom. Anal. 6(3), 365–383 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aigner, F., Pallwein, L., Schocke, M., Lebovici, A., Junker, D., Schäfer, G., Pedross, F., Horninger, W., Jaschke, W., Hallpern, E.J., Frauscher, F.: Comparison of real-time sonoelastography with T2-weighted endorectal magnetic resonance imaging for prostate cancer detection. J. Ultrasound Med. 30, 643–649 (2011)

    Google Scholar 

  4. Arridge, S., Scherzer, O.: Imaging from coupled physics. Inverse Probl. 28(8), 080201 (2012)

    Article  Google Scholar 

  5. Beard, P.: Biomedical photoacoustic imaging. Interface. Focus 1, 602–631 (2011)

    Google Scholar 

  6. Biswas, R., Patel, P., Park, D.W., Cichonski, T.J., Richards, M.S., Rubin, J.M., Hamilton, J., Weitzel, W.F.: Venous elastography: validation of a novel high-resolution ultrasound method for measuring vein compliance using finite element analysis. Sem. Dial. 23(1), 105–109 (2010)

    Article  Google Scholar 

  7. Bohs, L.N., Geiman, B.J., Anderson, M.E., Gebhart, S.C., Trahey, G.E.: Speckle tracking for multi-dimensional flow estimation. Ultrasons 38, 369–375 (2000)

    Article  Google Scholar 

  8. Bruhn, A., Schnoerr, C., Weickert, J.: Lucas/Canade meets Horn/Schunck: Combining local and global optic flow methods. Int. J. Comput. Vision 61(3), 211–231 (2005)

    Article  Google Scholar 

  9. Doyley, M.M.: Model-based elastography: a survey of approaches to the inverse elasticity problem. Phys. Med. Biol. 57, R35–R73 (2012)

    Article  Google Scholar 

  10. Dular, P., Geuzaine, C., Henrotte, F., Legros, W.: A general environment for the treatment of discrete problems and its application to the finite element method. IEEE Trans. Magn. 34(5), 3395–3398 (1998)

    Article  Google Scholar 

  11. Elbau, P., Scherzer, O., Schulze, R.: Reconstruction formulas for photoacoustic sectional imaging. Inverse Probl. 28(4), 045004 (2012). Funded by the Austrian Science Fund (FWF) within the FSP S105 - “Photoacoustic Imaging”

    Article  MathSciNet  Google Scholar 

  12. Emelianov, S.Y., Aglyamov, S.R., Shah, J.: S Sethuraman, W. G. Scott, R. Schmitt, M. Motamedi, A. Karpiouk, and A. Oraevsky. Combined ultrasound, optoacoustic and elasticity imaging. Proc. SPIE 5320, 101–12 (2004)

    Article  Google Scholar 

  13. Evans, L.C.: Partial Differential Equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (1998)

  14. Fawcett, J.A.: Inversion of \(n\)-dimensional spherical averages. SIAM J. Appl. Math. 45(2), 336–341 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  15. Finch, D., Haltmeier, M., Rakesh, : Inversion of spherical means and the wave equation in even dimensions. SIAM J. Appl. Math. 68(2), 392–412 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Finch, D., Rakesh, : Trace identities for solutions of the wave equation with initial data supported in a ball. Math. Methods Appl. Sci. 28, 1897–1917 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fu, Y.B., Chui, C.K., Teo, C.L., Kobayashi, E.: Motion tracking and strain map computation from quasi-static magnetic resonance elastography. In: Fichtinger, B., Martel, A., Peters, T. (eds.) Medical Image Computing and Computer-Assisted Intervention MICCAI 2011, Volume 6891 of Lecture Notes in Computer Science, pp. 428–435. Springer, (2011)

  18. Geuzaine, C., Remacle, J.-F.: Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Numer. Meth. in Engineering 79(11), 1309–1331 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Haltmeier, M.: A mollification approach for inverting the spherical mean Radon transform. SIAM J. Appl. Math. 71(5), 1637–1652 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Haltmeier, M., Scherzer, O., Zangerl, G.: Influence of detector bandwidth and detector size to the resolution of photoacoustic tomagraphy. In: Breitenecker, F., Troch, I. (eds) Argesim Report no. 35: Proceedings Mathmod 09 Vienna. pages 1736–1744 (2009)

  21. Haltmeier, M., Zangerl, G.: Spatial resolution in photoacoustic tomography: effects of detector size and detector bandwidth. Inverse Probl. 26(12), 125002 (2010)

    Article  MathSciNet  Google Scholar 

  22. Helgason, S.: Integral Geometry and Radon Transform. Springer, New York, NY (2011)

    Book  Google Scholar 

  23. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  24. Ledesma-Carbayo, M.J., Kybic, J., Desco, M., Santos, A., Sühling, M., Hunziker, P., Unser, M.: Spatio-temporal nonrigid registration for ultrasound cardiac motion estimation. IEEE Trans. Med. Imag. 24(9), 1113–1126 (2005)

    Article  Google Scholar 

  25. Kuchment, P., Kunyansky, L.: Mathematics of thermoacoustic tomography. European J. Appl. Math. 19, 191–224 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lecompte, D., Smits, A., Bussuyt, S., Sol, H., Vantomme, H., Van Hemelrijck, D., Habraken, A.M.: Quality assessment of speckle patterns for digital image correlation. Opt. Laser Eng. 44(11), 1132–1145 (2006)

    Article  Google Scholar 

  27. Lerner, R.M., Parker, K.J., Holen, J., Gramiak, R., Waag, R.C.: Sono-elasticity: medical elasticity images derived from ultrasound signals in mechanically vibrated targets. Acoust. Imaging 16, 317–327 (1988)

    Article  Google Scholar 

  28. Li, C., Wang, L.V.: Photoacoustic tomography and sensing in biomedicine. Phys. Med. Biol. 54, R59–R97 (2009)

    Article  Google Scholar 

  29. Li, L., Wang, L.V.: Speckle in photoacoustic tomography. Proc. SPIE 6095, 60860Y (2006)

    Article  Google Scholar 

  30. Manduca, A., Oliphant, T.E., Dresner, M.A., Mahowald, J.L., Kruse, S.A., Amromin, E., Felmlee, J.P., Greenleaf, J.F., Ehman, R.L.: Magnetic resonance elastography: Non-invasive mapping of tissue elasticity. Med. Image Anal. 5, 237–354 (2001)

    Article  Google Scholar 

  31. Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press, New York (2003)

    Book  Google Scholar 

  32. Morozov, V.A.: Methods for Solving Incorrectly Posed Problems. Springer, New York, Berlin, Heidelberg (1984)

    Book  Google Scholar 

  33. Muthupillai, R., Lomas, D.J., Rossman, P.J., Greenleaf, J.F., Manduca, A., Ehman, R.L.: Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269, 1854–1857 (1995)

    Article  Google Scholar 

  34. Nahas, A., Bauer, M., Roux, S., Boccara, A.C.: 3D static elastography at the micrometer scale using Full Field OCT. Biomed. Opt. Express 4(10), 2138–2149 (2013)

    Article  Google Scholar 

  35. Nilsson, S.: Application of Fast Backprojection Techniques for Some Inverse Problems of Integral Geometry. PhD thesis, Linköping University, Dept. of Mathematics (1997)

  36. Norton, S.J.: Reconstruction of a two-dimensional reflecting medium over a circular domain: Exact solution. J. Acoust. Soc. Amer. 67(4), 1266–1273 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  37. Norton, S.J., Linzer, M.: Ultrasonic reflectivity imaging in three dimensions: Exact inverse scattering solutions for plane, cylindrical and spherical apertures. IEEE Trans. Biomed. Eng. 28(2), 202–220 (1981)

    Article  Google Scholar 

  38. Nuster, R., Slezak, P., Paltauf, G.: Imaging of blood vessels with CCD-camera based three-dimensional photoacoustic tomography. Proc. SPIE 8943, 894357 (2014)

    Article  Google Scholar 

  39. Ophir, J., Cespedes, I., Ponnekanti, H., Yazdi, Y., Li, X.: Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason. Imaging 13, 111–134 (1991)

    Article  Google Scholar 

  40. Palamodov, V.P.: Reconstructive Integral Geometry, volume 98 of Monographs in Mathematics. Birkhäuser Verlag, Basel (2004)

    Book  Google Scholar 

  41. Pan, X., Gao, J., Tao, S., Liu, K., Bai, J., Luo, J.: A two-step optical flow method for strain estimation in elastography: simulation and phantom study. Ultrasons 54, 990–996 (2014)

    Article  Google Scholar 

  42. Parker, K.J., Doyley, M.M., Rubens, D.J.: Imaging the elastic properties of tissue: the 20 year perspective. Phys. Med. Biol. 56, R1–R29 (2011)

    Article  Google Scholar 

  43. Prasad, P.R., Bhattacharya, S.: Improvements in speckle tracking algorithms for vibrational analysis using optical coherence tomography. J. Biomed. Opt. 18(4), 18 (2014)

    Google Scholar 

  44. Prince, J.L., McVeigh, E.R.: Motion estimation from tagged MR image sequences. IEEE Trans. Med. Imag. 11(2), 238–249 (1992)

    Article  Google Scholar 

  45. Ramm, A.G.: Inversion of the backscattering data and a problem of integral geometry. Phys. Lett. A 113, 172–176 (1985)

    Article  MathSciNet  Google Scholar 

  46. Revell, J., Mirmehdi, M., McNally, D.: Computer vision elastography: speckle adaptive motion estimation for elastography using ultrasound sequences. IEEE Trans. Med. Imag. 24(6), 755–766 (2005)

    Article  Google Scholar 

  47. Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational methods in imaging, volume 167 of Applied Mathematical Sciences. Springer, New York (2009)

    Google Scholar 

  48. Schmitt, J.M.: OCT elastography: imaging microscopic deformation and strain of tissue. Opt. Express 3(6), 199–211 (1998)

    Article  Google Scholar 

  49. Segal, L.A.: Mathematics Applied to Continuum Mechanics. MacMillan Publishing, London (1977)

    Google Scholar 

  50. Solmon, D.C.: Asymptotic formulas for the dual Radon transform and applications. Math. Z. 195(3), 321–343 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  51. Sun, C., Standish, B., Yang, V.X.D.: Optical coherence elastography, current status and future applications. J. Biomed. Opt. 16(4), 043001 (2011)

    Article  Google Scholar 

  52. Treeby, B.E., Cox, B.T.: K-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wace fields. J. Biomed. Opt. 15, 021314 (2010)

    Article  Google Scholar 

  53. Wang, H.J., Changchien, C.S., Hung, C.H., Eng, E.L., Tung, W.C., Kee, K.M., Chen, C.H., Hu, T.H., Lee, C.M., Lu, S.N.: Fibroscan and ultrasonography in the prediction of hepatic fibrosis in patients with chronic viral hepatitis. J. Gastroenterol. 44, 439–436 (2009)

    Article  Google Scholar 

  54. Washington, C.W., Miga, M.I.: Modality independent elastography (MIE): a new approach to elasticity imaging. IEEE Trans. Med. Imag. 23(9), 1117–1128 (2004)

    Article  Google Scholar 

  55. Wejcinski, S., Farrokh, A., Weber, S., Thomas, A., Fischer, T., Slowinski, T., Schmidt, W., Degenhardt, F.: Multicenter study of ultrasound real-time tissue elastography in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the BI-RADS\(^{\textregistered }\)-US classification system with sonoelastography. Ultraschall Med. 31, 484–491 (2010)

    Article  Google Scholar 

  56. Woodrum, D.A., Romano, A.J., Lerman, A., Pandya, U.H., Brosh, D., Rossman, P.J., Lerman, L.O., Ehman, R.L.: Vascular wall elasticity measurement by magnetic resonance imaging. Magn. Reson. Med. 56, 593–600 (2006)

    Article  Google Scholar 

  57. Zakaria, T., Qin, Z., Maurice, R.L.: Optical flow-based B-mode elastography: application in the hypertensitive rat carotid. IEEE Trans. Med. Imag. 29(2), 570–578 (2010)

    Article  Google Scholar 

  58. Zhou, P., Goodson, K.E.: Subpixel displacement and deformation gradient measurement using digital image/speckle correlation (DISC). Opt. Eng. 40(8), 1613–1620 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Joyce McLaughlin, Paul Beard, and Ben Cox for helpful discussions and express our gratitude to the referees for their stimulating remarks. We acknowledge support from the Austrian Science Fund (FWF) in Projects S10505-N20 and P26687-N25.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Glatz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glatz, T., Scherzer, O. & Widlak, T. Texture Generation for Photoacoustic Elastography. J Math Imaging Vis 52, 369–384 (2015). https://doi.org/10.1007/s10851-015-0561-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-015-0561-4

Keywords

Navigation