Skip to main content
Log in

Titanium scaffolds for osteointegration: mechanical, in vitro and corrosion behaviour

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

While titanium has been successful as an orthopaedic or dental implant material, performance problems still persist concerning implant-bone interfacial strength and mechanical modulus mismatch between metal and tissue. Porous structures are an advantageous alternative because the elastic modulus can be adjusted to match that of bone, thereby preventing bone resorption. Furthermore, to achieve early and strong stabilization theses structures may be coated with bioactive deposits, as hydroxyapatite. In the present work, titanium porous scaffolds were produced from TiH2 slurry by a replication sponge reactive sintering method, and coated with hydroxyapatite by the sol-gel process. The obtained structures were microstructurally and mechanically characterized. Their in vitro bioactivity was investigated by soaking in a simulated body fluid (SBF). Electrochemical characterization was also performed in order to evaluate the effect of coating on corrosion resistance.

The scaffolds exhibit a three-dimensionally interconnected porous structure that can be mechanically and morphologically compared to trabecular bone. Their in vitro bioactivity suggests potential for osseous integration. Coating also improves corrosion resistance in physiologically saline environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E. D. SPOERKE, N. G. MURRAY, H. LI, L. C. BRINSON, D. C. DUNAND and S. I. STUPP, Acta Biomaterialia. 1 (2005) 523

    Article  Google Scholar 

  2. G. RYAN, A. PANDIT and D. P. APATSIDIS, Biomaterials. 27 (2006) 2651

    Article  CAS  Google Scholar 

  3. J. -P. St-PIERRE, M. GAUTHIER, L. -P. LEFEBVRE and M. TABRIZIAN, Biomaterials. 26 (2005) 7319

    Article  CAS  Google Scholar 

  4. J. P. LI, S. H. LI, C. A. V. BLITTERSWIJK and K. De GROOT, J. Biomed. Mater. Res. 73A (2005) 223

    Article  CAS  Google Scholar 

  5. C. E. WEN, Y. YAMADA, K. SHIMOJIMA, Y. CHINO, T. ASAHINA and M. MABUCHI, J. Mater. Sci.: Mater. in Med. 13 (2002) 397

    Article  CAS  Google Scholar 

  6. S. NI, J. CHANG and L. CHOU, J. Biomed. Mater. Res. 76A (2006) 196

    Article  CAS  Google Scholar 

  7. J. P. LI, J. R. De WIJN, C. A. V. BLITTERSWIJK and K. De GROOT, Biomaterials 27 (2006) 1223

    Article  CAS  Google Scholar 

  8. M. NIINOMI, Mat. Sci. Eng. A243 (1998) 231

    CAS  Google Scholar 

  9. Z. S. RAK and J. WALTER, J. Mater. Process. Tech. 175 (2005) 358

    Google Scholar 

  10. V. A. DUBOK, Powder Metall. M. C. 39 (2000) 381

    Article  CAS  Google Scholar 

  11. T. V. THANARAISEL and V. I. RAJESWARI, Trends Biomater. Artif. Organs. 18(1) (2004) 9

    Google Scholar 

  12. L. L. HENCH, J. Am. Ceram. Soc. 81(7) (1998) 1705–1728

    Article  CAS  Google Scholar 

  13. M. TAKEMOTO, S. FUJIBAYASHI, M. NEO, J. SUZUKI, T. KOKUBO and T. NAKAMURA, Biomaterials. 26 (2005) 6014

    Article  CAS  Google Scholar 

  14. N. OLMO, A. I. MRATÍN, A. J. SALINAS, J. TURNAY, M. VALLET-REGÍ and M. A. LIZARBE, Biomaterials. 24 (2003) 3383

    Article  CAS  Google Scholar 

  15. H.-W. KIM, Y.-H. KOH, L.-H. LI, S. LEE and H.-E. KIM, Biomaterials 25 (2004) 2533

    Article  CAS  Google Scholar 

  16. Y.-M. LIM, K.-S. HWANG and Y.-J. PARK, J. Sol-Gel Sci. Techn. 21 (2001) 123

    Article  CAS  Google Scholar 

  17. F. BARRÈRE, P. LAYROLLE, C. A. V. BLITTERSWIJK and K. De GROOT, J. Mater. Sci.: Mater. in Med. 12 (2001) 529

    Article  Google Scholar 

  18. M. NIINOMI, Sci. Technol. Adv. Mater. 4 (2003) 445

    Article  CAS  Google Scholar 

  19. R. M. SOUTO, M. M. LAZ and R. L. REIS, Biomaterials. 24 (2003) 4213

    Article  CAS  Google Scholar 

  20. X. LIU, P. K. CHU and C. DING, Mat. Sci. Eng. R. 47 (2004) 49

    Article  CAS  Google Scholar 

  21. S. TAKEMOTO, M. HATTORI, M. YOSHINARI, E. KAWADA and Y. ODA, Biomaterials. 26 (2005) 829

    Article  CAS  Google Scholar 

  22. V. GENTIL, in “Corrosão” (Livros Técnicos e Científicos Editora, Rio de Janeiro, 3ª Edição, 1996)

  23. S. L. ASSIS, S. WOLYNEC and I. COSTA, Electrochemica Acta. 51 (2006) 1815

    Article  CAS  Google Scholar 

  24. D. KRUPA, J. BASZKIEWICZ, J. KOZUBOWSKI, A. BARCZ, J. SOBCZAK, A. BILIŃSKI and B. RAJCHEL, Vacuum 63 (2001) 715

    Article  CAS  Google Scholar 

  25. D. KRUPA, J. BASZKIEWICZ, J. W. SOBCZAK, A. BILIŃSKI and A. BARCZ, J. Mater. Process. Tech. 143–144 (2003) 158

    Article  CAS  Google Scholar 

  26. A. BALAMURUGAN, S. KANNAN and S. RAJESWARI, Trends Biomater. Artif. Organs. 16(1) (2002) 18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra C. P. Cachinho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cachinho, S.C.P., Correia, R.N. Titanium scaffolds for osteointegration: mechanical, in vitro and corrosion behaviour. J Mater Sci: Mater Med 19, 451–457 (2008). https://doi.org/10.1007/s10856-006-0052-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-0052-7

Keywords

Navigation